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F WORD

The Ballistic Research Laboratories served as host to the Second

Conference of Arsenal Mathematicians. This one-day meeting was held

24 February 1956. Colonel A. R. del Campo, Director of the Laboratories,

extended a welcome to those in attendance, and then commented on the

contributions which mathematicians are making in various specific areas.

He also mentioned a few of the training programs currently active at the

Aberdeen Proving Ground. Following the talk by Colonel del Campo,

Sessions A and B of contributed papers were started and these continued

until noon. Session A was chairmanned by Professor H. H. Goldstine of the

Institute for Advanced Study, while Associate Technical Director of the

Ballistic Research Laboratories, R. H. Kent, served in a similar capacity

for Session B. Following lunch more contributed papers were presented at

Sessions C and D. Dr. George Glockler, Chief Scientist of the Office of

Ordnance Research, and Mr. R. R. Kuebler, of the Office of the Chief of

Ordnance, served as Chairmen of these two phases of the program which

continued until mid-afternoon. At 1500 the group of some seventy-five

scientists in attendance at the conference came together to hear an invited

address by Dr. C. B. Tompkins of the University of California. His address

was entitled Linear Programming and High Speed Computer Applications.

Colonel P. N. Gillon, Ccmmanding Officer of the Office of Ordnance Research,

was the Chairman of this final portion of the conference.

Fourteen scientific paper presented -- -- . Boundary

layer problems, stress analysis; allistic equations, stability and heat con-

duction problems, computer and automatic weapon analysis were some of the many

topics in applied mathematics that were
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While it was gratifying to the committee on arrangements to have an over

supply of program material, it was unfortunate that time did not permit

presentation of all the submitted papers. A two-day conference would have

been organised had it been possible to foresee the amount and the quality

of the available talent.

Initial Distribution

The initial distribution list of the Transactions of the Second

Conference of Arsenal Mathematicians includes those who attended the meeting

and/or the government installations with which they are associated. For

economy, only a limited number of copies have been sent to each. Additional

copies will be transmitted upon request.
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listed in Session C is classified SECRET. From 1450 to 1550, Session E
will be the only session in order.
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R. Sedney

Ballistic Research Laboratories
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Problems for Nonlinear Ordinary Differ-
ential Equations

Erwin Fehlberg, Redstone Arsenal

1000-1030 INTERMISSION

1030-1100 - Measurement of Nonlinear Forces and
Moments by Free Flight Tests

C. H. Murphy
Ballistic Research Laboratories

1100-1130 - An Analogue Computer Study of Interior
Ballistic Equations

William Dittrich
Frankford Arsenal
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AFTERNOON

1300-1430 259 SESSION C - In this session the paper by Pvt. L. E.
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Chairman: George Glockler, Office of
Ordnance Research

1300-1330 Stability of a Luquid-Filed Shell

Pvt. L. E. Schmidt, Picatinny Arsenal

1330-1400 Analog Computer Simulation of Automatic
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E. H. Jakubowski, Springfield Armory

1400-1430 The Solidification of Molten Material in

Finite Regions

A. Nordic, Picatinny Arsenal
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A NUMERICAL SOLUTION OF BOUNDARY VALUE PROBLEM FOR
NONLINEAR ORDINARY DIFFERENTIAL EQUATIONS

By
Erwin Fehlberg

Redstone Arsenal, Huntsville, Alabama

Introduction. This paper presents a numerical approach to the iteration
method as applied to boundary value problems for ordinary differential equ-
ations.

Instead of using a numerical integration procedure for the iteration
method, expansions in series are applied. In this way the solution is
obtained in an analytical form and can easily be computed for any value of
the argument. In article 1 the method will be explained in detail for the
second- order differential equation. In article 2 the results for the
third- and fourth- order differential equation are sunmarized.

This paper is not concerned with the investigation of criteria for the
convergence of the iteration method, but it is always assumed that the con-
sidered boundary value problem has a solution and that the iteration
procedure converges to this solution.

1. Second- order differential equation. We assume the differential
equation has the form:

- f(xyy'), (1.1)

and we are interested in an integral of this equation that solves the follow-
ing boundary value problem:

x - - 1 : 7 - (- l ) ,( 1 2(1.2)
x - +1 : y - y(+l).

A linear substitution on x will transform any finite interval
a < x - b into -1 < x < 1. Therefore, our choice of the x-values in
(1'2) does not mean-any-restriction.

According to the iteration procedure we have to introduce into the
right-hand side of (1.1) an approximate solution of (1.1) which satisfies
(1.2). By this introduction the right-hand side of (1.1) reduces to a
function of x alone:

.y" - f(x). (1.3)

Integrating twice we get the next approximation for our solution, the
constants of integration being determined by the boundary values (1.2).

To perform in a convenient way this integration procedure of successive
approximation, we make use of expansions in Legendre series. Let us put in
(1.3):

y" - f(x) - E F .P (x), (1.4)
n nn
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the Legendre coefficients Fn being given in well-known manner by:

F 2n+l 5" f(x) Pn(x)dx. (1.5)2n -1

For the required solution y(x) of (1.4) we similarly put:

y(x) - E Y .P Cx) (1.6)
n n n

with unknown coefficients. However, these unknown coefficients Yn can easily
be expressed by the well-known coefficients F of the right-hand side of
(1.4). n

Denoting the integral ff(x)dx by (1)f(x) and the integral

I (l)f.c~dx by (2)f(x, from (1.-4) follows:

-" (2)f(x). (1.7)

The coefficients Y in (1.6) are then given by:

y. 2+ J1 (2)f(x) Pn(x)x. (18)

Integration by parts reduces (1.8) in the following manner:

Y 2n+1 (2) f(x) (i) X 2n+ ( ) P( )T~ (xd2+ fx)2)(x) . (1)x((
&i P)_ f x P()+ 2~

0 1I

+1 (1.9)

_ f(x) '(2)P'n(X)dx.

We assume n- !2 and compute Yo0 and YI later by means of the boundary values.

Then the first two terms on the right-hand side of (1.9) are zero. This
follows for the first term from the well-known relation:

(2n+l).(l)Pn(x) - Pn1l(x) - Pn1l(x) (1.10)

for Legendreks polynomials. For the second term this follows by integrating
(1.10):

(2n+l) (2) Pn(x) - (1)Pn+l(x) - (1)pnl(x)

(2n~l) (2) - n 2(x) - Pn(xj - - 1 (e)
P 2(X) 2n*3 Ln2nj 2-

Fn (x) - P 2 (x)j
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The equation (1.9) then reduces to:
+1

Y n 2+ jf(x) (2)pn(x)d (n>2) (1.12)
-1

or, using (1.11):

Y . 1 1 1 2n+1 +1
n 2n+3 f(x) Pn+2(x)dx - (2n+3)(2n- f (x) P(x)dx+

+1

2n-1 f f(x) Pn-2(z)dx (n_2
-1

or:

F -2 2Fn Fn.2

n (2n-3)(2n-1) - (2n-1)(2n+3) (n (n2) (1.13)

By (1.13) the coefficients Yn (n>-2) of our approximate solution y(x)

can immediately be computed as soon as the Legendre coefficients Fn of

(1.4) are known. However, the determination of the F is a relatively easy

problem and comparable e.g. to the determination of the coefficients of a

Fourier series. As to the technique of the determination of the FnI the

reader may be referred to two former papers of the author*).

We still have to determine Yo0 and Y1 " From (1.2) follows:

Y° o + 1 ,l + 2  , ... n +" "n " " y( l)
(1.14)

yo - 7l + y2 + . . .n + y(-).

Introducing the abbreviations:

S[y(+i) + Y(1) -j(l) (1.15)
[(+l) - Y(-1)3 'Y(l)

we obtain from (1.14) by addition or subtraction:

Yo + Y 2 +14 .. + Y 2n + . . . (l) (1.16)

1 3 5 + " + 72n+ + " " "1 (

* Zeitschr. f. angew. Math. Mech. 24 (194), p. 71/76

31 (1951), p. 104414.
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From the first equation (1.16) and from (1.13) follows:

0r Y- 1 2 V -2' 5(l) -V'-1 tOV-3)(4-1 - 74If ( l WA)

F 2Y+2

47-*3) (L4Y+r5))

or:

Y0 -(l)-.F 0 +L F2. (1.17)
3 15

From the second equation (1.16) and from (1.13) follows in quite the same
manner:

Y, - .) -L1F, 1 l F(.1)
3703

By the coefficients (1.17), (1.18), and (1.13) our approximate solution of
(1.1) and (1.2) is completely determined.

We then have to substitute this approximate solution and its first
derivative into the right-hand side of (1.1) and have to repeat the procedure.
For the actual substituting it is useful to express the Legendre coefficients
Yn' of the first derivative y'(x) also by the F-y.n

In quite the same way as in the case of the Yn we find:

I Fn_1  F+ 1
Yn 2n-1 - 2n+3 (n -l) (1.19)

and:

Y0' ;(1). (1.20)

2. Third- and fourth-order differential equations. We can here restrict
ourselves to a short summary of the results which can be obtained in quite the
same way as in article 1 for the second-order differential equation.

a. Third-order Differential Equation

Differential equation:

y,, . f(x,Y,y,,y") (2.1)

Boundary values:

x - -1 : y - y(-l)

x -1 : y' -y'(-l) (2.2)

x -+l : y -(+l).
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Coefficients for the approximate solution:

('2n-5)2 -3) - (2n-) (2n+3)' 12n-l)((2 + 5)

F n + (n_ 3)(2n+3)( (n 5)(2n+7)

3 3 9 0 35 105

Y- (1)%j F + 2 F 2 - 1 F4  (2.3)

15 105 315

Y 2 - -17ly'(-l) + Fo - -_. F 2 +1 F -_9 F

Coefficients for the first derivative of the approximate solution:

Y n-2 2Fn + Fn+2 (ni 2)
n n-3)(2n-l) - (2n-1)(2n+3) (2n+3)(2n+5)

Yo ' - (l) (2.4)

Yl' - (1) - g~)+ 1 F - 1F 2+1F1 5 105 35

Coefficients for the second derivative of the approximate solution:

l F F. (n > l)

n -S -1 2n+3
(2.5)

YN - -- 1

b. Fourth-order Differential Equation:

Differential equation:

-||| f(x,y,yI'y",yI'''). (2.6)

Boundary values:

x( , (2.7)

x +l :y y(+) , y (+l)
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Coefficients for the approximate solution:

Fn-4 4n-2
'n = (2n-7)(2n-5)(2n-3)(2n-l) - (2n-5)(2n-3)(2n~l) (2n+3)

6F n !-+2+ 2n3)(2n-l) (2n+3) (2n5) (2 n+3) (2n+5)(2n+7)

F2-3 nF4 (n 4)(.)

+ (2n+3)(2n+5)(2n+7)(2n*9)

(2.8)
Y- (1)-l (1) + I F - 2 F,+ 1 F

3 45 315 945

5 5 2F 1575 3  405

S;1 (1) - 2 F + 1 F 2 - F F

2 ~ ~ 3 r o yo5 2-079 4 -q 6

Y3 -l2 ' () - I (1)- 2 F + 37F3 -J F 5 1 F7
5 5 Z75 17325 6435 19305 8

If, similar to (1.16) the following abbreviations are introduced:

~ ,'+)+7 (A1 'l (2.9)

We obtain coefficients for the first derivative of the approximate
solution:

F n F n-3 3 1l + 3Fn+1

2n-5)(2n-3)(2n-l} (2n-3)(2n-l)(2n.3) (2n-l)(2n+3)(2n+5)

F+3 (n--3)

(2n+3T(2n+5)(2n+7)

T o ; 1 
( 2 .1 0 )

S1 F + 2 F - 1 F

15 0 105- 2 3'

Y2 '(1) () -. 1F, + 2 F 3 1 F5
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Coefficients for the second derivative of the approximate solution:

S Fn-2 2F Fn*2
Yn (2n-3) (2n-17 ) 2-1 (2n+i3) + (2n+3) (2n+57 (n!~ 2)

" 0 ;,(l) (2.11)

"- 3,(l) - 3;(l)

Coefficients for the third derivative of the approximate solution:

, 2n-l n+l (nl)n Y--1-- -+_-3
(2.12)

T 0 01'(l) -3;(l) + 1 F1 - 1 F3
015 3

Note: In this paper we have considered only the simplest boundary con-
ditions. However, our method can also be applied to more involved boundary
problems. For these boundary conditions, of course, affect the determination
of only the firstrcoefficients Y0, Yl, go* V-1 , ifjr is the order of the
differential equation.



THE MEASURENT OF NON-LINEAR FORCES AND
MOMENTS BY MEANS OF FREE FLIONT TESTS

C. H. Murphy
Ballistic Research Laboratories

Abe Gee Proving Oroun, Matryland

An important technique of the exterior ballistician is the determination

of the aerodynamic forces and moments acting on a model by measurements of its

free flight motion. Since this technique has been traditionpaly handicapped

by a restriction to linear force systems, considerable Importance has been

attached to the extension of the technique to non-linear force systems.

Although great success has been achieved in the application of the methods of

non-linear mechanics to the analysis of non-linear problems, this work is

usually restricted to one degree of freedom systems. In exterior ballistics,

however, we are taced with the problem of the angular motion of a alsdle and

mast contend with two degrees of freedom.

In this paper we will first discuss the problem of one degree of freedo

and then describe the extension to two degrees of freedom. A general class of

non-linear equations in one dependent variable may be written in the form:

x + ax - Lf(x, x)and a >O. (1)

The general solution of the linearized equation (g - 0) is x - Acos(r x + 8).

Poincar 1 has shown that, for "small" values of g, periodic solutions of (1)

exist near solutions of the linearized solution. Poincar6 's work was modified
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by Gy1den and Lindstedt to eliminate certain secular terms. Although the

Lindstedt process is an iterative one, the first step is often sufficiently

accurate. A rather simple method for performing this first dtep is embodied

in the Kryloff and Bogolinboff method of equivalent linearization. 2

In this process Equation (1) is approximated by an equivalent linear

one of the form.

+ + x = 0 (2)

with the solution x = A e kt cos (a)t + 5). The coefficients of Equation (2)

are determined by averaging lf(x, i) over a period of the notion. Kryloff

and Bogolinboff, replace the parent non-linear equation by a family of

equivalent linear equations. The coefficients of these linear equations

depend on the amplitude and, hence, are functions of initial conditions. In

particular, if we consider the motion of a unit mass attached to a cubic spring
then

with restoring force - ax + bx3 th/f(x, i) - bx' and the parameters of the equiv-

alent linear equation are

k- 0 (3)

w 2 - a + b(3/4 A2 ) ('4)

For this special case Equation (1) can be solved exactly in terms of an

elliptic integral of the first type. The exact frequency has been compared

with that predicted by Equation (4) and almost amazing agreement has been observed.
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In the case of a weak spring (b . 0) for which the cubic component can actually

reverse the direction of the spring force, Equation (4) was accurate to 1-1/2%

up to amplitudes which would make the cubic component half as big as the linear

,=ponent. For the strong spring (b 40), Equation (4) retained this accuracy

of 1-1/2% for amplitudes of oscillation which make the cubic component six

times bigger than the linear component. Thus we see that the method of equiv-

alent linearization is good for non-linearities which are definitely not "small".

Equation (4) can not only be used for the prediction of the motion of a

onss acted on by a cubic spring, but it can be used in the dynamic measurement

of this cubic force. We can disturb the spring and compute values of amplitude

and frequency from the resulting otion. If a series of different disturbances

are used, we can obtain/nmber of different values of A and w. Using Equation

(4),w is plotted versus the effective squared amplitude, 3/ A2 , and a line

fitted. The slope of this line is b, the coefficient of the cubic term, and

its intercept In a, the coefficient of the linear term.

The situation for the angular motion of a missile is quite similar. If

we ow make use of a Cortesian coordinateg~otem with 1-axis along the trajectory,

the 2-axis in the hor~zontal plane, and the 3-axis determined by the right hand

rule, the direction cosines may be denoted by JT'?X2, X, X. For

good missiles, the angle between the missile's axis and the trajectory, which

is called the yaw angle, is small and ). and X are then projections of this

angle on horizontal and vertical planes respectively.
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For simplicity we will consider an aerodynamic moment of the same form

as the cubic spring. 7he magnitude of this moment is, therefore, a cubic

function of the angle between the missile's axis and the trajectory.

IMOmnti ' IKMO + %~ 2 5 2 )bI C (5)

where 82- 12 + 2

0 ad are dimensionless aerodynamic coefficients., and

C is a dimensional constant.

In Reference 3 it is shown that the angular motion must satisfy the folloving

second order differential equation in the complex variable X -, + i '

1 O + %2 82).- 0 (6)

where A - axial moment of inertia

B - transverse moment of inertia, and

- axial spin.

The solution of the linearized form of Equation (6) is

K .ei 0 l +K2 • 
(02

where 1 00 + i t

KI are complex constants.
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Thus we see that the solution is generated by two complex vectors with

magnitudes Ki and rotating with frequencies ki. In Reference 3 the equivalent

linearization process is applied to Equation (6) and it is found that the

solution has the same form as Equation (7). The frequencies ktIs are now

functions of the amplitudes K 's. In particularEquation (4) has the follow-

ing generalization

.2 (8)
I'mrange 01 -l02 1-tKM 8 2 5e

- ___01 __02

According to Equation (8), from a number of different firings the measured

amplitudes of oscillation and frequencies should be combined to yield pairs of

2
--1.--62 and 8 e and these data points fitted by a line. In Figure 2lthis is

done for a body of revolution. In this case three center of mass positions

were tested and so three different values of KO and %2 were obtained. These

values shoved excellent internal consistency when they were compared with the

usual center of mass transformations. Independent wind tunnel tests of this

model were made and good agreement with flight tests was obtained.

Next this technique was applied to a large yaw program in which angles up

to 3e had been obtained. In Figure &these data are plotted and we see that

two lines are needed to fit the points! A little reflection showed that each

line corresponds to a cubic segment in the moment plane. An examination of

* See end of this paper
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the individual firings shoved that all rounds possess yawing motions which made

use at one or the other segments but not both and this interpretation of the

data vas, therefore, valid. In Figure 3 the actual moment plane is plotted.

(For large angles, 8 is actually the sine of the yav angle and not that angle

itself.) The physical explanation for the "corner" at 230 vas found to lie

in the fact that the flow separates from the lee side of the model at about

2,0. Comparison with direct wind tunnel measurement showed excellent agree-

-mast.

Because of this success in treating a non-linear static moment, the

effect of non-linear Magnus and damping moments waf -considered. In Reference

3 it was found that these moments cause both modes of osciallation to damp

exponentially. The exponential coefficients are functions of amplitude and

plots similar to Figure 1 are possible. A number of measurements of non-linear

MAgnus moments have been made and this extension to dumped oscillations has

proven extresme ly valuable.

1. Poincare, Rep Los methods no ne dI&nis M * 'Vol. I.

2. mNorsk~, N,q Intmootlon to Uon-Umaar Ksfaamios- Maapbr =gl Je W.
Rda hAm AOrq 19I4T.
3.~.. .0C1 LesrmutfN broes and t oft

3* 0 0 sea t lg m fa yN wo
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AN ANALOG COIP.UTER STUDY OF INTEIOR BALLISTIC EQUATIONS

By

William A. Dittrich
Frankford Arsenal

A study has been undertaken at Frankford Arsenal to simulate the interior
ballistic performance of a recoilless rifle by solving a set of simultaneous
differential equations describing the system on an analog computer. It was
desired to make use of the computer as a development tool to investigate the
effects on system performance of varying certain parameters. This provides
weapon system development with an intermediate step between theoretical cal-
culations and firing a test weapon, its simulation on an analog computer,
making possible a large reduction in the number of test firings necessary to
develop a weapon.

The object of the study, then was:

First, to establish the validity and limitations of the equations proposed.

Second, if the validity of the equations proposed were established, to show
the use of the computer as a development tool by investigating the changes in
muzzle velocity, peak pressure, and the like produced by varying certain pro-
pellant and physical design parameters.

The initial weapon studied was a 57 mm recoilless rifle, chosen because
of the large amount of experimental data available for it. The equations of
motion for this weapon are a modified form of those derived by Hirechfelder and
others for a conventional weapon, familiar to many of us.

Equation of State:

PV ( + B)12 N'F T VC A N-C

Where:

P - pressure (lb/in2)

V - volume (in3 )

N3- gas in weapon (lb)

F - impetus of propellant (ft.lb)
lb

T - gas temperature (°K)

X - travel (in)

C - charge (lb)

T - isochoric flame temperature (K)
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B - virial coefficient for gases

A - area of bore (in 2)

N - total gas produced (ib)

P - density of propellant Lb
in,

PEOJECTILE VELOCITY EQUATION

V A/M f Pdt

where V velocity

M * mass of projectile

PROJECTILE TRAVEL EQUATION

I-f dt

BURNING RATE EQUATION

N - 2 _ 'fp 7 dt
V

where r - burning rate constant (in
sec)

W - web (in)

nozzle discharge equation

N" - CD AT Pdt

where:

CD - nozzle discharge coefficient

AT - throat area (in 2 )

N - gas flowing from nozzle (1b)

NflO! EQUATION:

2.N'C T - NC 0 CDC AT 1TOT NiP- (1 +0) MVr"
V T Dp A 02

where:

Cv a constant volume spec. ht. of gases

C a constant pressure spec. ht. of gases

- heat loss coefficient
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These, then, were the equations set upon the computer. I suppose a short
explanation of the analog computer operation would be in order here. The
analog computer found its first major use in the field of guided missiles
where the cost of test firing made necessary a means of performing all possible
research by theoretical means. Recently its use has been rapidly increasing
in other science and engineering fields. The analog computer uses such elec-
tronic components as amplifiers, resistor capacitor networks, and potiento-
meters set up in a circuit which obeys the same set of equations as the dynamic
system under study. Voltage fluctuates as pressures or displacements, for
example, in the physical section and the dynamic response of the simulated
system can be recorded. The analog computer has the advantage of simplicity
of setup and operation, and speed of solution, however its accuracy seldom
exceeds 1 percent. In interior ballistics problems this is normally adequate;
the accuracy of measurement equipment used in experiments seldom is more
accurate. A few of the basic circuits for various mathematical operations
are shown below:

Resistor Condenser Amplifier

Integration Differfntiation

eC.

,~eC<R ci'o reduce anplif ier noi.a

multiplication by constant Sumation

The circuit schematic for the equations given earlier to represent the
interior ballistics of a recoilless rifle is shown in figure1 . (At the end
of this paper).
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A total of 18 amplifiers, six multipliers and some nonlinear function
generators were used. Six channels of information were recorded.

A typical computer run is shown in Figure 2.

It can be seen that peak pressure is 6100 lb/in2 and muzzle velocity is
1175 ft/sec. Since the initial charge is 1 lb. it can be seen in (N) and
that only 70 percent was burned and only 30 percent went to propelling the
projectile. These values agreed quite closely with experimental test results
as can be seen in fig. 3. Peak pressures of experimental test results were
within 5 percent of computer values. Muzzle velocities came within 5 ft/sec.
of each other as shown in figure 4.

Having shown the equations to be representative of the actual physical
system it was then decided to vary certain design parameters to discover the
effects on interior ballistic performance. Variations of such parameters as
web of propellant, burning rate constant, throat area, and nozzle discharge
coefficient was made and effects on weapon performance noted. Although time
does not permit a complete listing of results of varying such parameters, I
can say that it was found that the web size, charge weight, burning rate
constant exerted the greatest effect on peak pressures and muzzle velocities
of weapon while virial coefficient, nozzle discharge coefficient and specific
heat ratio of gases has little effect on the ballistic cycle. The effect of
nozzle variations might greatly effect recoil, however, a point not investi-
gated in this study. An example of results obtained, the effect of a linear
burning rate equation on weapon pressure is shown in fig. 5.

Since the completion of this study other weapons have been analyzed by
this means and suggestions made for ways to improve their performance. Once
the analog computer is set up, it is possible to make a hundred or more
solutions for different parameter values within one day. The feasibility of
certain new weapon systems, such as rocket assisted guns, have also been
investigated by this method, resulting in quite a saving over experimental
studies. It is hoped in the future that the computer simulation will become
one of the standard steps in the creation of a new weapon system.



25

41

140

*0 0



27
Neg. #266fl4.2

f I I
i 14 il -I _TT-

-A * \

PHORON INSIG.TC HRTD- PIOINU6A



29

77 .... 7

14
.31 -*7

7S

I .;



31

41..
H-11

IT

i L1

i IT A K



* 33

Goi

1 4 N

4 . i-n
iIl i ii: f d



2ME RSPONSE OF A TAPEED CANTI]LAVER BEANMW11
A TRANSIENT FORM IS APPLIED AT TH END

by
A. B. Elder

Ballistic Research Laboratories

IM25WDTION

in recent years several authors have investigated the vibrations
of a beam attached to a mechanical system having lumped physical con-
stant.. McBride' determined the normal modes and natura~l frequencies
of a uniform cantilever beam with a terminal dauhpot. Youn'oaculated
the response of a cantilever beam attached to springs and masses * We
will determine the response of a cantilever bea with linear terminal
constraints when an arbitrary transient force is applied at the end.
we willrestrict our investigation initially to beam having a power
law variation of section prcppertieso as beams of this description have
been considered by several authors, and thir results fozrm a convenient
point of departure for the present study. 3#*o

1.* RIMONE OF A TAPMIE CAZITILV BEOX WMU
A TMEAL 1 r M, MASS, AND DABHPOT

Consider the mechanical systini shown in the diagram below:

1 4F.-e~ro a viscous damping constant
k -spring constant,

The equation of motion is

a 2 a~ (2)
.-(i-)+ pA J- 0 1
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The boundary oonditions are

Y(j, t) - 0 (2)

y (J, t) - 0 (3)

mYtt(00 t) + cYt(o, t) + kY(o, t) -(t) - [En= (o., t] (5)

F(t) -0, t _o (6)

F(t) = F, t > 0 (7)

Y(x, 0) - 0 (8)

Yt(x, 0) - 0 (9)

The Laplace transform, deflmd by the equation

7(X, a) f e'stY(x, t)dt,

0

ws used to remove the time variable from the above qstem of equation.

[,3rr=(z, a)]= + s2 .t(, s) - 0 (10)

Y(i, s) - 0 (U.)

Y10, a) - 0 (12)

ZIy3=(O, a) - 0 (13)

(2 + as + k)y(o, a) + [uv(o, 3 (1)

Consider a cantilever beam in vhih the section properties vary
as a power of the distance from the tip.

Rz(I), - 3(j) • a(15)
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pA(z) () ( ) (16)

The mass of the beam is
A

t m  f.x)dc x E4 (17)
0 +

0

The static deflection curve due to a terminal 1oad F is

(x) -13 a (3 -A) t (2 -) (18)0ox  "zzJjM - wo( - Co 1 -1 7 )}

The static gring rate is given by

k 7 .(3 LO X(J)(19)

For bewms of rectanular cross seotion, the section modulus Is given
by

The stress at the outside fiber of the beis s

These equations show that the parameters a and are subject to certain

restrictions:

13 > - 1 Finite mass of bern.

a < + 2 Finite deflection.

a + p3 6 2 Finite bending stress.

The problem may be rendered Almsnsionless by the following series
of substitutions:

a a qx
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)ua)

4 2 a-p PAWA

or a.2 .- ao+4 . E(J)4

PAM ) A

m m
W (pA-') (p + 7)1m

7 in

Equation (8) nov beoms

16% coy = 0( 222)

Lt 8 - -+ 4

Then the series solutions of (22) are

Yc - 1 + 68 1(8 + 8 . ..... . (23)g m'I +T T3(8 l)( + - 2)(8 + 2- +) + 2

(a- " + "'"' + (2)

Y3() + (8 + 3 - a)(8 + 2 - a) (8 + X.1 + ..... + (25)

2-a + 2 "a+8

Y4(6) 2 +(8 - 1)((5 + 2 -a)(8 -a) + ..... + (6)

If a - 1, Y2 and Y4 coinoide, Mu Y4 mst be redlaoe bY the logmritbaic
solution

74(c) - Y2(4)109 £ + + 6 + 245.-1) - 1,+ + + T
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These solutions satisfy the following boundary conditions at the origin:

)d'ya(e) d 2y (c)
yi(c) --rd- ,.- de2 - 'e I

y1 (G) 1 0 0 0

a2(,) 0 1 0 0

Y3(0 0 0 0 (3 -)(2 -a) (28)

y4 (4) (Eq. 26) 0 0 (2 - ol)(1 - a) 0

Y4 (6) (Sq. 27) 0 0 1 0

The transform of Y(z, t) is of the for.

y(x, ,) - 01(,)y1(e) + c2 (s)y 2 (,)

+ a 3(8)r(c) + 0 4 (s)y4(,)

On referring to (13)and (28), ve see that

04(s) - 0

The remainin coefficients are readily obtained by applying Cramer's
rule. On cubining the results according to the rules for sdding
deterainants, ve find

z(S) '2(G) Y3(6)
yJ(X.) -2(X.) Y ( .)

6) 3.y (1 ' Y,'( .) Y3 (,.) 1(.,

(- +4. *I iYx 0 (2 - a)(3 - a.

1( ) Y('X() Y3'0.)

The deflection Y(x, t) may be found by using the Bromwich inversion
integral. Iat s + iwu #o> 0 ; then
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1 f St
=l. ii

The integ'l is an analytic function of s. The only singularities
are poles which occur at a = 0 and at the roots of the frequency equa-
tion

A(x) - 0

where

(-P40 +i B + *) 0 (2 - a)( - G) '

y-'(X) Y2'(X) Y3'(X)

It will be shown subsequently that all the poles of y(x, a) In the a
plane lie on or to the left of the imaginary axis. Let X 1 2 ... 'n

be the rota of this equation in order of increaing modulus an
let sn "V + l

The residue at the origin is

li sy(x, ,)
aI , 0

If the damping constant y is sufficiently small, the remaining poles
are simple and the residues may be found by differentiation. Let

-y1 (e) Y2(6) Y3(e)

s,(,- x(X) Y2(X) = (X.)

yrz'O) '(X.) Y- '(X.)
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and let

q(s) - GM

Then the residue at the pole a = n In the tpwer half plaw Is

or

y 1 ( ,s) 2

Y1(.) Y2(X) Y3(x)

since

Let

r(g, n)"

wMe on - i + icay then the residue at -on * ~ in the lower

half plane is

Mhe sum of theme residues is reaL. LAt

Re(rn), Im(rn) be the real and imahinary parts of r(e, X On

combining the above results, we find
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Y(x, t) - 3 a)(2 ~)i+ )Zx(i) .[(7x)3-c - (3 - + (2x) +i(2

F'y [Ite(r.)aos %t - 3Iu(r.)sin u~te(53)
awl

If the daMping constant y is zero, $ and Im(r%) are both zero, and

the, series solution has the simpler form

Y(x, t) - P)( k + [ [ -a - - + (2
(3 a) -) (- + -)Z())

Y( 1( ) 72(e) "(G)

- -(2-cx.......)15 oo. 1)( +,

na-

The characterisntic root X., my be found approximtely by truncating

tthe astedin series for isL) with the term in eqatio. Lte

u y(X) Y2(k) 1 - .

to

()- O (6)
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or

1 Fj(S +a-1)(8 + - )(8+=- 3) (b7)

ITf on the other hand the tip In hinged, ve have

ul(- )  0 o (38)

or

x 2; '+ 1)(8+ a 1'8 a + 3y 9

Let

2r 6 -3az= + b(b, + 1,)(8 +. I - 1])(5, - CS + 3) + b(b + a 1 )(5, + C1 -' 2)(5, +' ;}

and

r + . -a

Then, approximatelr,

- l5 + 17), L + IT 0 ,

2- -- (140)

On referring to Sq. (32), we se, that

~ '-~~ T* " if 41iIl> 72 (41)

W, J 21A i~f 4 Tl 72 (42)

Critical damping occxre vhen

4 l 7I
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Tie first characteristic root s1 is then repeated giving rise to a

double pole in the transform y(x, a). Terms of the form t cos alt

and t sin a~t will then occur in Eq. (33). If 4,r v 2, Eq. (40) will
have two re , unequal roots, and the system vill-b overdamped in the
first mode.*

Orthogonal function theory may be used to show that * -(0 when the
damping constant c is), 0. Let y(x, an ) be a normal funicton satisfying

Eqs. (10-13) and the homogeneous bounday conditioa

(me2 + ca + k)y(o, a) + [EIyx(O, 5] - 0 (43)

Then the complex conjugate of y(x, sn ) will satisfy Eqs. (l-13), the

differential equation

and the boundary condition

(E2+ ai + k)3;(0, asn) + [zis.(O, $A . 0 (45)

We may show that

2 2 )fA (x,-(an aa) iyx.aiX s)dx
0

d y(0,' as 2),,
Y(O' n) I [EI  dx 2 1 (o' sn) ' 1 4 2

In the case of a uniform cantilever beam with a terminal dashpot, McBride
has shown that aritical damping and over-damping cannot occur in modes
higher than the first. This fact is probably true of cantilever beams
of non-uniform aross-section with a terminal mass, spring, and dashpot.
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Now .* + oh- "n - n 'Pso that

a n 'n n- 21wln

5 n 2 . 411n. n,%

On using the boundary conditions (13 and (45), we find after same reduction
a(o, sn)(o, an). (46)

*lrn A . ... e

2 ([nW(O, in)3(O, *n) + JpAy(x, .n)Y(x, Sa)Cx ]

0

Nov a c Tplex number times it. conjugate is real and positive; therefore

1(0 if a>o

and

n-0 if a-aO (47)

This result would be expected on physical grounds.

By means of a similar analysis we find that

A 42(x, a.) &~xs)(8

(o dnYo " ) , a ~ .)
-n 7 + -ao (48 )

+ ky(O, s)-(, a.) = c LI y(o, s)(o, on)

- 0

On omparing the coefficients at a in Bqs. (46) end (48), we find

A d 2 y(O, a d &(O, on
ky(O, sa)(OP on) +fz E ---

2 2 o C C
2 +Q % A( 9

-0
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17 1 2 ( 0 n] 2 dcy (0, s ) +

2 0 ' (50)
m2(o, n) + I y'(° Sn)d

Equation (50) is the usual energy equation f-r the circular frequency;
(49) is the corresponding equation for the modulus of the complex circular
frequency co + i * .

DYNAMIC EFFICIENCY OF BEAM

The present study is the outgrowth of a design problem which 1rose
in the Ballistic Research Laboratories at Aberdeen froving Ground. A
spring device was required to respond accurately to large forces of
rapidly varying magnitude. In order to apply approximate engineering
analysis to the test results, it was necessary for the spring device
to respond essentially with a single degree of freedom. Due to the high
forces and relatively low spring rates encountered, the spring element
was fairly heavy, and it was suspected that the distributed mass might
cause appreciable response in the higher modes.

The beam-type spring device built at the Ballistic Research Labora-
tories is represented schematcally in the figure below:

We will consider only the response to a step function of force applied
to the muss, m, as the response to other terminal forces may be found
by using Duhamel's integral.
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Equations (1-9) of Part I apply provided ve set k a 0, a a 0 in
Eq. (5). We way find the noraal elastic acurves b setting Yn(x, t)
yn(x),-os ant;

-A[zdn ' Z1 ' q (51)

2 2 )o (Y2)

d 2 o (5)yn(J), o (nx ,

Yn(l) - 0 (514)

T " (55)

It is convenient to use the influenoe function and Its bilinear expan-
sion in terms of normal elastic curves to solve this problem. The
response coefficients are expressed in terms of energy integrals nd
other parameters of the system. The effects of a ahange in system
parameters upon the response of the first mode may then be determined.

he influence funotion G(x, e) to the equilibrAm isplaemnt
of a point x caused by a unit load at a. It satisfies the differnntial
equations

-.o o. , a $I

The influence function and static deflection curve y (z) satisfy the

bondary conditions (52-55).

Under fairly general conditions, the Influence function will possess
the absolutely and uniformly convergent bilinear exansion
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OtYn(X)Yn(C)
(x 4) - . ... A ,)

nul 2[ [2(0) + fpoa 2d.](6

0

It is evident that Yo(Z) - Fj(x, 0). The final e3PesLsO for the dyMami

deflection in

Y(xs, t) . yo(x) - I( A(c") oo (57)
u. 2[m' 2 + fp*n2,,]

0

The response coefflents for cantilever bams my be defined as follow:

Y(o, t) - YOM El a*- coonat (58)

Ytt(o, t)- B coo %t (59)

A co mparisom of equations (57) and (59) shows that

B, M ) j (61)

0

This coefficient has an obvious intepretation in term of kinetic
energy. In aases of interest B differs far more from unity than
either A or Cl, and form a coiveient basis of eamparison in measuring
how far i beo-mass system departs from single deaee-o-freedom action.
In order to find B1 exactly, the complete se~utlon of the Bermoulli-

Euler equation Is required. Reasonable boude, however, my be derived
from the influen-e function, vhich is the solution of a much simpler
equation.



Conference of Arsenal HMthwaticians 4

The notion of reduced zass is frequently used to account for the
eff'ects of the distributed =ass uipon the fundamental frequency and
kinetic enerS7 of a been-raeu system. It is defined as

2
PA,2dx

0

Mr Y, (0)

We see that

B m
B1  M - U

We may shov that

nO(04 0) < B m.(0) (62)

mGOSO 0) + fpAo(zx)dx my 02(0) +f~od
0 0

and

I j

J (v2x, xKx>12(~z(3
G(OO 0) pAG Mr (0) fp~

The above relations wre derived for a cantilower beam. lever-.
thels. they hold for are general conditions of constraint,, proie
the assmtions Wich underlie this developmnt arstil valid. No
awerpy nust pass between the besam-zas system and the sappoting
structure ad, this structure wast restrain the beam against rigid, body
intion. In the table belcv, a omparison is mads between the eat and

appozistevalues of 91 for certain unifora beam.
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VALUES OF BJAU1D r FOR CRTAIN UwIwCI BEAN

Central Mass Central Moo
Cantilever Ends Hinged Inds Built In

B1 Exact .863 75 * .800*

13 Upper Bound .864 .755 .802

B1 Lower Bound .857 .738 .766

r Upper Bound 1/4 8/15 16/35

mb

%r Lower Bound 33/140 17/35 13/35

In the above equations, m corresponds to a terminal mass fixed
by the conditions of the test. The kinetic energy of the beam must be
reduced in order to improve the dynamic response of the besm-mass
system. This is done by increasing the stressing efficiency and at
the same time minimizina the reduced mass of the be=. However, the
strength and energy requirements of the beam-mass system must be main-
tained, and the beam should be readily fabri*ated. The last condition
sets a practical limit to the improvement in response vhich may be
obtained by redesigning the beam.

Let

7 = maximum load

S a maximum stress

a - stress at given point

I Young's modulus

k - spring rate

p - density (mass per unit volube)..

V - volume of beam

*These fiures are derived frow data given by I. P. Gay, Reference (8).
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The static efficiency, a, is defined as

a = 2dV

By equating the internal strain energy to the work done on the beam,
we may show the minimum mass of the beam is

All the factors but a are determined by the characteristics of the beam
material and the required characteristics of the special spring device.

Consider again a cantilever beam in which the section properties
vary as a power of the distance from the tip (15-21). The static
efficiency is

The mass of the beam is

tmb =JfOU -O
0

The reduced mass ratio is

b m

b
and the net efficiency ratio is a

Xa
Let v = , 8 - a + 4; then, on referring to Eq. (63) we find that

1 '
0'3 ) 2  b 1 .)2d

8+ a- M (3)c5)+ + 1,,5(,'a - (3- a')- + (2- a)i dr

0

When a is fixed, the extremes of this inequality are decreasing fun.-tions
of 8. We should take 5 as large aa uoasible subject to the condition
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a . 2. Let 5 = 2 - a; ti4en for cantilever beams of uniform static
bending strength we have

3 k T2c T3- (1 .r + (2 2 a~dT
0

We see that may be made an small as we please by taking a large anda

negative. However, the only values of a which are practical for engineer-
ing purposes lie in the interval

In the table below, the mass ratio 2_ is taken to be

VAJUM OF T MASS RATIO AND B1 FOR

CANTILEVER BEAMS 0r WINOEM sm=GTH

BI '  m_ 9

b(a) __ "_

a Lover Bound Uqelwr Bound ier Bound

1.0 .0667 .0833 .985 .982

1.1 .07o6 .0884 .984 .981

1.2 .0749 .0940 .984 .980

1.3 .0796 .1001 .983 .978

1.4 .0848 .1o68 .982 .976

1.5 .0905 ..U43 .980 .975

The combined effects of increased stressing efficiency and more

favorable mass distribution decreases the net efficiency ratio brom 1

for a uniform cantilever beam (a a3 . o) to I/36 for a linearly tapered
cutilever beam (a = 1) having the same strength and energy
characteristics.
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THE RESPOISE 0? UNIFPMH AND LM ARLY TAP CANTI1ZVM BFXW

Cantilever beams of uniform cross section were used in the first
spec l sprind device constracted at the Ballistic Research looratories.
A diagraw is shown belov.

F Wt

Ar I
The response to a step function of force may be obtained by setting
a = Op A n O, c = O, k = 0 in Eq. (1-9). The series (23-25) are then
expressed in terms of hyperbolic and. cir~ular functions. The character-
istic equation is

-... (cosh X sin X - coo X sinh X) + (1 + coo X cosh X) - 0

The circular frequencies are given by

iftere Xn is the nth positive root of the frequenc equation. fhe motion

at the free end is

Y(iP t) mf.[1 An c06oo t
nt3
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where

AnE 12 Leoth xAn - cot x)
Xn4[ Xn + (M + )(coth Xn -cot Xn

The acceleration of the mass m is given by

Ytt R3 Bn 0

where

4m coth Xn - cot Xn

B %. 2)6n . + (I + M-)(cothX n - cot x.)
.nrb n n

The strain at the built-in end is given by the series

3Calculations were carried out for the mass ratio -g as this was

considered the most unfavorable ratio that would o~cur in practice.
The results are tabulated below:

RESPOILSE COEPFICIENTS FOR A URNWOR CANTILUVER BEAM

m 3

IV

- "n  An B c

1 .1464,338 1.0000 .999461111 .863269 +1.022259

2 3.99951130 12.171 .00051740 .066194 - .026047

3 7.1132135 38.497 .00001859 .02301 + .00=49776

4 10.241683 79.806 .000002159 .011874 - .001694

'. 13.376078 136.13 .000000442 .007074 + .000767



Oonferenoe of Arsenal Hathuatioan

We see that only the a-eleration coefficient B1 differs markedly

from unity. The approximate analysis of Part II indicates that a
linearly tapered cantilever beaM should respond more faithful.ly to a
transient for.e applied at the end. Accordingls, te second spring
device was constructed of linearly tapered beams of constant static
bending strength, as shown in the diagram below:

Xg

The response to a step function of force may be found by setting a a 0,
k = 0 in Eqs. (1-9) and a - 1, = = 1 in the equations of Part I. The
deflection may be expressed in terms of the functions

1 Ct4  . '8
Yl =0 1 +...

2-659  2 6 c9

Y 2 =C+ 71 + 1778T t

which are solutions of the differential equation

eYEee + 2y fee y =.0

These series were first given by A. Ono in,his study of turbine blades.

The frequency equation is

A(X) = o
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where

x 2 0

yl'( ) Y2'( ). Y3( W

The alroular frequency of the nth mode i

where In Is the nth politive root of the frequenq equatian. he
deflection is

Y(x, t) . (A- X)2

Yl(f,) Y2(4) Y3(6)

oe i±plaoat at the free eand Is given bF

Y(OS t) m (I - An coo %t)
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where

8A ,,2(X,) y 'c .,3

The corresponding aooeleration is given by

ytt(o, t) . . oo %t

where

Y2(Xn1 Y3(X)

BnP )6 1 Y2'1Xn)  Y3'(n)l

lab% -. (Xb ~ ~ ~ ' _____________

The strain at the free end Is given by

where

yi(Xn) Y2( )n)
'4 yl'(Xn) Y21

n " " -n( )

on referring the aharsateristlo equeatim, ve see that

•Bn  - an

for all values of n. A similar formula is true for all besoe of uniform
static bending strength.
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The functions y1' y2 , and y,, together vith their first three

derivatives, were calculated by the Computinz laboratory of the
Da~iistia Research ILboratories. The characteristic roots and Fo ier'
coefficients were then found by desk rululation. The values of these

constants for a mass ratio - = i are given belov.

REaPmN CO mFmICT FOr A LINAlLY TAPE= BEM

m 3

1 1.26397436 1 .99969708 .956369
2 4.1091986 o.563 .00029522 .0315259
3 7.13M 31.908 .00000680 .oo66287
4 10.25647 65.844 .00000054 .0022484
5 13.3853 112.144 .00000o .0010133

sumn .9999M9 .9"7759

This table show how a more favorable mass distribution reaueas the
kinetic energy of the beam. The estimated value of B1 estimted by
Rayliegh's method is .9574, an error of only 1/10 of 1%.

The response coefficients were also calculated for a mas ratio

of _! . this constant strength characteristics an a uniform

cantilever beam baving a mass ratio of .nt~l Fbeb
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RESPONSE C0EF7ICMNS FM A LINBLY TAPD BEAN

n a n A n n

1 .96741174 1 .9o996478 .98523

2 4.08611 17.84o .00003439 .01078

3 7.13179 54.347 .000O076 .00222

4 10.25263 112.32 .0000006 .00075
5 13.38315 138.34 .00000001 .00034

Sum 1.00000000 .99934

We see that the acceleration response of the tapered cantilever
beam closely approximates the response of a massless spring for the
mass ratio used here. The figure B1 - 863 obtained for the cantilever

beam of uniform aross section should be compared vith the value B1 - .985

shown in the table above. There is a corresponding lmpov t in
the A, coefficient.

Normal deflection curves for uniform beams subject to various end
constraints have been published by Den Hartog and others. It vms
convenient to graph the normal deflection curves for the tapered beam
in dimensionless form. The length of the beam equals the characteristic
toot; the deflection scale is arbitrary. The base of the beam is
built in; the tip vas either hinged or free. hese correspond to the

limiting values of the ratio _! ". 0 and a -+ 0@ . The deflection

equation is:

y1() Y2() Y3(0

'(') "") ,( ) Y,(,.)

-1,(.) 12,(X.) Y'3,(X.)
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ao~ 188:1a + 82,Vy2(4) + B,;3 (6)

The chracteristia roots, the scaling constant Son MA the constants

Si n are tabulated belov.

DU'MUCTIC CONSTANTS FOR A TAPE CAKIIM UM

8 3"n 0
n3,n  2 n

1 2.6752 1.0000 2.83354 1.50406

2 5.5718 .2000 -2o.8476o +12o57850

3 8.6883 .0200 +297.4o2400 -178.12100

4 11.8152 .0010 -4931.18ooo +2954.160o0

5 14.9494 .0001 +90799.60000 -54395.0000

From this table, It is found that )l 2 a 7.1567, vhich mr be 00oared

vith the value 7.16 given by Ono. M le remaining roots apparently
have not been given previously, even in the extensive tabulation or
haateristio roots published by D. Wrinch.

Slmila calculations were =e for a tapered beem hinge at the
tip.

TV HMO - mm WUm II

81,n 0

-h ,fl :2 3.U

1 4.0750 1.000 +3.92382 -2.90119

2 7.1278 .100 -46.0O530 +35.14440

3 10.2507 .010 +71.5.6&10oo -545.85500

4 13-38M0 .005 -1245230000 +F94198. n000

These deflection curve.' Ore shown in Fig. 1 SMd 2.
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ANALYSIS OF AN IN~FINITE PLATE CONTAINING RADIAL CRAC
* ORIGINATING AT THE~ BOUNDARY OF AN INTERNIL CIRCULAR HOLE

by
0. Lo Bowie

Watertown Arsenal

Io INTRODUCTION

Considerable advance has been made in recent years in the
application of energy type theories in determining the influence
of cracks in the specimen geometry on the strength of the specimen.
b ordr to apply theories such as that developed by A., A. Oriffith

(l)J*s it in necessary to calculate the elastic strain energy of
the syetem. Although only the boundary stresses and displacements
are actually necessary for this caclain one must nevertheless
formally solve the problem as a wole to obtain this Informtion.

This paper is concerned with the solution of a particular class
of plane prol-lezus in elasticity arising from a distribution of
radial cracks of finite length originating at the boundary eurface
of a circular hole In an infinite plate under the two load systems
shown in Figure 1. The geometry of the internal boumdary, 10# --

be conveniently dbscribed by colgidering the plate as the complex
z -planevwhere- x +iy =re , Then$ if the center of the hole

cshosen as z Opwe specif4 that the radial. cracks lie along
o - Op 2WX# .. (-1)297K where KAI Is an integer* For 12,
we furter restrict our attention to cracks of equal length.

Two load systems will be considered in detail* The first of
these (illustrated in Figure la) is the case of uniform tension
at infinity with <(free from applied load. In addition to its
plane stress applications this case enables us to study the plane
strain problem corresponding to intern4 pressure acting in hollow
cylinders of very large wall thickness with longitudinal cracks
originating at the inside surface. Indeed, this latter problem
can be studied by smerimpo sing the solution corresponding to' uni-

form I~dr ata pressure. The second load system will be taken
as tension (in one direction) at Infinity as Illustrated In Figure
1b, again with C considered. as free from applied l~ad. This latter
case arises In the plane stress problem of radial cracks at the
boundary of a circular hole In a very large thin plate under tension.,

The problems described above can be met conveniently handled
by the omplex variable method of Nuhlisili [(2)] for solving
plane problems of elasticity.

:1 S-i-mrs SI brackets refeor to the references at the end of the
paper.
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I. STRESS ANALYSIS.

A. Formulation of the Problem

The oomplex variable method of Musheliuvili depends upon the
representation of Airy's stress function, U (x, y), in terms of
two analrio functions of the oomplex variable, a, namely, 0 (s)

nd "(s, owhere

U('x, 7) = Re~ r4(z) TJOVP(s) d ()

With this representation the stress oomponozts in rectangular oo-
ordinates can be written as

0)y 4 O(Txa 2~I'a 4 z)] . 4 Re CV'(s)] (2)

0--y - 6- 4 21IC xy 2 I3 O1(s) 4 0t' (sjj (3)

where the prime notation denotoe differentiation with respect to a
and the bars donote the complex conjugates. The condition that a
boundary T' be load-free can be expressed an

0 (Z) 4 **-F(a) + - 3 0 a ." - (4)

It is convenient for the purpose of enforcing the boundary
condition (4) to introduoe an auxiliary orqplex plane, theo
- plane, such that the unit circle, 6-a e , and its exterior in
thet -plans are tapped into T and its exterior, respectively,
by the analytic function

2 a W (I) (5)

The stress functions 0 (s) and 0' (s) can be considered as functions
of the parameter ; in fact, to simplify the notation we shall
designate

~(sa 0 dtw(fjs D a ) (8()

Thus, 0'(z) - (()/w(t), etc. and the boundary condition (4) can

be written an

The analysis of t e problem requires the determination of the
funct ions n andt which are analyti o for - and
satisfy the loading oondl t ions at infinity and on t Ie unit circle*
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B. The Ipping Function

The mapping function (5) for this problem can be expressed
in differential form as

da/s a (1 -k~ (1 4 Ut- 4 V 2) (8)

where C is a real constant such that 0stiC1' I and 'he denominator
is considered ?oeit ive at " x 1 in order to define the proper branch.
By varying f , the crack depth can be adjusted to assigned values.
The integer K determines the number of radial cracks. It in evideut
from the structure of Equation (8) that the exterior of the unit
circle in the t -plane is mapped conformally into the exterior of
the corresponding boundary in the z - plane. Finally, from symetry
it Is clear that the unit circle is mapped into a circular boundary
interrupted by K symmetrically distributed radial cracks of equal
depth.

The mapping function defired in differential form by (8) can,
in general, be found in closed form by quadrature. For K a 1, it
can be shown that

The form of the mapping funtion, however, increases in complexity
with larger integers, K.

For the purpose of the subsequent stress anlysin, it is
desirable to find a series representation of W(O) converging on
and exterior to the unit circle. The form of such a series is
evidently

L 4Y, ,; A (10)

where o and 4ge A_ 's are real coefficients. The coefficients An

can be oonenien ty computed from the following recursive formlae,
determined by expanding both sides of (8) in series and equating
coefficients of equal powers of

"K A,-* "6 1

-21 A2, a 2*A 1 1  (11

-31A 3 a 3 4 A-I-$ 4 A,6'RI
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where

0e, (12)

and

*(K a -2(1 - oosc() sinto./sino. , 005 . * -E

The unit circle in the I -plane is the circle of convergence
of the series (10) since singularities occur on the unit circle at
the roots of

2K 2 rK 4 1. 0 (13)

It can be shown(1) that liman : 0; thus, by a well-known
n -Uo 0

theorem CW:I the series (10) converges at all points on the circle
of convergence except at the singular points described above. This
property is useful in that it provides for a systematic scheme for
obtaining polynomial approxinations of the mapping function.

C. Method of Solution

Were it not for the unknown character of the singularit ies of
() an d f/'A 1~ on the unit circle, the problem could be solved

y simply asmg a series development of the two functions with
the proper conditions at infinity, substituting into the condition
(7), and determining the numerical values of the coefficients from
the set of relations obtained by equating coefficients of equal
powers of V . This approach would lead to imediate difficulties
as it will be shown-that f( r ) must admit simple poles on the unit
circle at those point. corresponding to the notch roots. Further-
more, certain singularities appear to exist at the points on the
unit circle corresponding to the junction of the cracks and the
circle. The forms of these latter singularities appear too diffi-
cult to establish a priori. A completely rigorous solution og the
problem would require that a series expansion of '0 (t ) and (P (k).
in which terms oorrespondin to simple poles at the crack roots be
added to the series for (/( ), be examined for convergence on the
unit circle. Although there is every reason to believe that this
procedure is possibly theoretically, severe practical difficulties

1. The proof is particularly simple for K.= 1. From (9), it cen be
seen that the An's behave essentially as the Legendre polynomials.
The proof is more difficult for K ) 2.
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irmdiately are encountered. Although the infinite system of
linear simultaneous equations which determine the coefficients
of the series is amenable to numerical solution, it is difficult
to determine rigorously the properties of the coefficients
necessary to examine convergence.

The method of solution which will be used in this analysis
circumvents direct consideration of the second type of singularity
mentioned above by considering polynomial approximations of the
mapping function. An accurate description of the stress distribu-
tion at the crack roots is obtained by introducing cusps to describe
the crack roots and their neighborhoods. Convergence of the poly-
nomial approximation to the exact problem can then be considered
a matter of choosing a sufficiently accurate polynomial approxia-
tion of the mapping function such that a closer approximation will
not affect appreciably the values for the information des4 red.

In the following analysis, we shall denote polynomial approxi-
mations of the mapping function by

The existence of cusps at locations corresponding to the crack
roots is ensured by demanding

where,( ') is a polynomial with coefficients such that the roots
of ( ) a 0 fall inside the unit circle. Due to the convergence
of (10), suitable approximations can be obtained by setting
en VAn modifications of the An 's being made to satisfy (15).

D. The Case of *All-Around" Tension at Infinity

For uniform tension at infinity, illustrated in Figure Ua,
the applied loading can be expressed as n a (a z T on 17- 1 R,
where R is very large. It can be shown2 t}at for this loading
condition the stress functions 1 (r) and 4/(P ) behave anCTr/2
andCTto , respectively, for largo I .•

2. A detailed discussion of the stress functions for infinite
regions can be found int(4.
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The singularities in the stress functions due to the existence
of cusps can be determined by the following argument. If there
were no boundary irregularities in (14), it can be shown0 that
the stress function in() is a polynomial of the form

By regarding the solution for polynomial mappings with cusps as a
14imiting case of this solution, it is evident that 0 ( ) will still
retain the form of (16) even though cusps are permitted* To deter-
mine the form of ( Q ), it is convenient first to express the
boundary condition (7) as

W ICO-) r.o-)--' )()- o 'o) (17)

The funotionw.'( t )'(. ) is analytic exterior to the unit circle
and is given as a continuous function on the unit circle by (17).
If the coefficients,&,n are chosen so that the coefficients of
all positive powers of in the Uaurent expansion of

vanish, we can determine L/( ) explicitly in terms of the napping
function and. 6 (r). Multiplying both sides of (17) by 1/2WL
(W-,) and integrating around the unit circle, we obtain by a
well-known theorem

W1M ( Q ()-(/) L4<C 0"(r). (19)

Thus, the stress function ' () has simple poles, .each located at
a cusp root.

All that is required to complete the analysis is the determina-
tion of the coefficients in the series expansion (16) for 0 (t).
Equating coeffioiputs of aln positive powers ofr in the series
expansion of (18) yields the following system of linear simultaneous
equations for the determination of theo .

V APP

Of6LP j Op+n 9+1 Ep4)n O"CT) (VfK) *(20)

P a V, i

3. E.g., the case for K u 2, N a 2 has been discussed by Morkovin
C(5 .in some detail.

4. Reference (Q, p. 146.
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It is evident that the state of stress is not affected by
the addition of a linear expressioi of the foRm CI +9L
to () or a complex constant, SC i4 , to JP (s). The constants
C', t and #' my be considered an zero in this problem. For K.-- 2,
the constant o'J has been chosen as zero; thus, a value of W0 is -

necessary to identically satisfy (7). For I x 1, the constant .c
is established as zero by the equation I 1 in (20)j thus, o ao1
is determined to satisfy (7).

3. -.e Case of Tension in One Direction at Infinity

Fcr the loading 0" = T, illustrated in Figure lb, the analysis
is quite parallel to that of Section D. It can be shownLI4Q that
for this loading condition, the stress functions O(i ) and ql(C)
approach CT'/4 and CT /2, respectively, for large i . The stress
function ) is again a polynomial and has the form

The constant 4Y does not contribute to the stresss instead, it is
determined in a~e sense of the last paragraph of Section D.

To determine .,we note that *°(r)((,) has a ai le
pole at infinity; in faot, L/(r )/I= 1 C2Tr/EA With the ex-
oeption of the point at infinity, 40W ) / T ) is analytic exterior
to the unit circle and is given as a continuous function on the unit
circle by

W "(0-) (P (a-) =- L 'CO-) Cr)-W ) (G (1)

If the coefficients ofn are chosen so that the function

t r) 0n(r-
we can agal d, tirine the -otionW(f ) in terms of the mpping
function and ()1 in fact, again we find

Due to the relative lack of stress symutry for this case,
it is difficult to present the linear systems of simaltanous
equations for the determination of the 4 n's in a ocmpact manner
for an arbitrary integer K. Therefore, only the systems for the
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sinsle crack (K n 1) and the two crack (Z a 2) cases will be
explicitly formulated.

For K a 1,

-K- + 7-! -n P-r.1

1, D, N (22)

For K : 2,

N--
it -/"'n, P) Ila P0(23) >

=- p.-I= p I.,'. t

III. APPLICATION OF THE GRIFFITH CRITERION

The critical stress for which the radial cracks begin to
spread will now be determined from general considerations of the
total energy of the system as developed by A. A. Griffith "'05 in
his theory of rupture of brittle5 materials, such as glass and
cast iron.

This theory is based on the e xistence of cracks on the surface
or in the interior of the solid; thus, rupture is assumed to be
conditioned primrily by the extension of an existing crack. The
spreading of a crack is accompanied by an increase in energy pro-
portional to the increase im surface; on the other hand, under the
action of a given external stress, the potential energy of a raoked
solid is lower than if there were no crack. If an extension of the
crack leads to a decrease in total energy, the system becomes un-
stable, the crack spreads, and the aterial fractures.

The critical stress is that value of the applied load for which
the total energy contribution of the cracks is a mximm. Its value
can be obtained from the condition

d&Z . -2K h G dY, (24)

5. Wdifications of this theory to account for local plastic e•Fore-
tion occurring in duct ile metals have been made by several authors,
e.g., Orowan, Reference C(6)),
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where
V a Vo - Vo a Reduotion of the potential energy due to

the introduction of radial cracks

Vo a Potential energy of the ysem with radial
oraoks

Vo w Potential energy of the system without onek

I s Number of radial cracks

h : Thickness of the specimn (axially)

G a Surface tension per unit area

a Length of the radial crack (s)

A. Calculation of the Reduction in Potential Energy, V

1. Uniformtension, T, at infinity.

For the case of uniform tension, T, at infinity, the
potential energy for the oracked solid, Vo, is given by

Wr

where 4, tr, Ur and Uo are the stress and displacement oo-
ponsnts in polar coordinates.

In order to compare the difference in potential energy with
and without radial cracks, it is reasonable to refer to the exact
geometry rather than polynomial approximations. This will now be
carried out by referring the stress functions to the original x
coordinate system. The application of the results obtained by
polynomial approximation of the boundary will then be carried out.

The integrand in (25) can be expressed in terns of the stress
functions P(z) and W(s) by observing that

and

where, in terms of Youn's Modulus, 3, and Nisson's ratio, o

4-C 9/2 (1 W-1 (28)
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and (3 -( -I)/(l 4-) for plane stress

7k• 3 - 4d- for plane strain

Thus, but for the oonstant factor 2.4, the real part of the pro-
duct of (26) and (27) yields the bracketed portion of the integrand
for the potential energy.

For the case of uniform tension at infinity, the stress funotions
have the form

,/ )-r o+ 1/_1-+ a., (30""'] ,)
q.,(z) - o ; r E1 3."-<1,,.7(
After souin algebra, it follows that, for plans stress,

. r _r 7) R_ (32)
- E

In order to calculate the potential energy for the unoratked
plate, Vo, the stress analysis for a concentric ring with inner
radius R and outer radius R loaded on the outer boundary by the
jans applied load must be carried out. It is necessary to retain
secondary.effoots in arder to arrive at the correct value of the
energy difference. The actual distribution of applied load including
secondary terms can be determined by substituting (30) and (SI) into
(S) and evaluating I- - 'L , The solution
of the corresponding boundary value problem for a concentric ring
can be fbund in a straightformrd manner 6 and for plane stress,

R-*-- E k Ra- R1 "I

The reduction in potential energy, V z To -io, is in the limit
V = O r I- t0 R. (34)

E
for the case of plane stress.

We now proceed to interpret this result in term of the previous
analysis based on oonformal apping. The stress function
, given by (17) can be expanded in a series

4,( Cre T It '-, pp (-,)

I. Reference U4F, pp. 291-2'96.
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from which it follows that

.60 -(36)

The hitherto unspecified parameter C occurring in the mapping
function will now be chosen so that the radius of the circular hole
is adjusted to a fixed unit distance. If d"z , is defined as that
point on the unit circle in the 1 - plane which corresponds to the
junction of the crack and the circle in the a -plane, then C will
be chosen so that

V= ; ('' )(38)

The crack leith, 4,measured in units of the radius of the

circular hole, can be expressed ase= C-~C)c(T- I (g(39)

from whioh it follows

where

~- / (41)

for the case of plane stress.

For plane strain, the second form of v. in (29) mast be used.
The results are identical but for a factor of 1 -c-2 with those
of plane stress. In fact, for plans strain

E
where f(1) is again given by (41).

2. Tension in one direction at infinity.

The calculation of V for the case of simple tension at
infinity, O-y a T, can be carried out in a manmer similar to that
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of the preceding section. For the case of plane stress, we find

2 IM g() (43)

where : o 4 , 2 -A) D 4 3/4
In (44),

T 0 8 coefficient of in the expansion of ()
0 •.g., Bquation 35)

oK2- coefficient defined by Equation (21) (45)

* cA _ coefficient of '-I in the mapping function (14).
Thus, A& , for Kz 1; A sE 1 for K: 2

A a 0 for K. 3.

B. The Critical Stress by the Griffith Criterion

The critical applied tension, T , can now be calculated for
the -different oases by substituting (40), (42) and (43) into the
condition expressed by (24).

For plane stress,

SFor uniform tension, T (46)

to i, ! -rG For siMle tension, a : T (47)

For plane strain,

To tz) For uniform tens ion, T (48)

Thus, if T > T0 , the crack will become unstable and lead to failure.

The plane strain criterion (48) is intended for the study of
radial cracks in cylinders under internal pressure. Such a load
system is obtained by superimposing a hydrostatic pressure of mag-
nitude P a T on the load system corresponding to the uniform tension
case. Since it can be shon that the superposition of a hydrostatic
stress state will not affect the. above critical stress, the critical
interral pressure, Pop is Liven by (48).
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IV. NUMERICAL RESULTS

The analysis indicated in the previous sections was numerically
evaluated for the case of two cracks as shom in Figure 1. In par-
tioulr, the stress functions were evaluated for nine values of the
paramter6 . From these results, the functions f(A) and g(A- in
the Griffith criterion were found in tabular form. Those data in turn
were numerically differentiated with respect to the crack length, Z,
and the critical stresses according to (46) and (47) were obtained.

A. Uniform Tens ion at Infinitz

In order to apply the Griffith criterion to this case, it in
necessary to numerically evaluate the coefficient Y. in (41). From
the definition of ' it can easily be shown by expanding (17) that

n(_-)

It was found that can be obtained to three significant figure
accuracy if thirty term of the polynomial approximation of the
sappiag function are retained. The system (20) for the determina-
tion of the 0(nie was solved for each choice of a by iteration.
The pertinent results of this calculation are listed in Table I.

TA DI I

Calculation of f(f) for Uniform Tension at Infinity

10000 00000 1.000 - 1.000 0.000

- 0.866 0.303 1.259 £. S36 . - 0.159

- 0.707 0.497 1.383 - 1.160 or - 0.359

- 0.500 0.732 1.500 - 1.267W " - 0.694

.0.000 1.414 1.707 - 1.509 V - 2.018

+ 0.500 2.7382 1.866 - 1.752 - 6.008

* 0.707 4.027 1.924 - 1.852 -11.640

+ 0.866 6,596 1.966 - 1.933 -27.880

* 4 1.000 @0 2.000 - 2.000 - @0
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For large values of 4, the solution approaches the form corres-
ponding to the case of a single crack in an infinite plate. In fact,

f (1)= - (A+ 1)2/2 . 1 (5o)

An examnation of the tabulated values of fC) indicates that for
/ ? 1 there in very good agreement with Equation (50).

B. Tension in One Direction at Infinity

In order to apply the Griffith criterion to this case, it is
necessary to calculate the function gV ) given in (44). It am be
shown by expanding (191) that, for this case, with K - 2

N

The system (23) was solved by iteration for the determination of the
W( n Is for the sam values of Las previously chosen. The pertinent

information obtained for this case is listed in Table II.

TABLE II

ClcUlation Of act) for sa le Tension at Infinty

-1.000 0.00 -o.5o -0.50 0.00

-0.866 0.07 -0.61 -0.62 -0.28

-0.707 0.15 -0.69 -0.74 -0.57

-0.500 0.25 -0.75 -0.87 -1.00

-0.000 0.50 -0.83 -1.13 -2.53

+0.500 0.75 -0.82 -1.33 -6.69

+0.707 0.85 -0.80 -1.41 -12.40

.0.866 0.93 -0.78 -1.46 +28.80

-.1000 1.00 -0.75 -1.50 -
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C. The Critical Stresses

The critical stresses for the case of uniform and simple
tension, To and T * respectively, can now be found by

differentiating numrioally the tabular functions f f2) and
gU) and observing Equations (46) and (47). These results
are shown in Figure 2.

For sufficiently large values of 2Z the or tio. oes
for both loading conditions are proportional to Q t 4'
as would be expected from the solution of a single ora'o'of
length 2(1 4Za). In Figure 2, it can be seen that for > .7
such an approximation become inoreasingly good. For tZ/--.7,
the behavior of the solution becoes complicated by the presence
of the circular hole.

Finally, the critical internal pressure, P , for the plane
strain problem of a circular cylinder with the gorresponding
plane geometry loaded by internal pressure is proportional to
the curve for T *, as indicated by (48) and the paragraph
following (8).o
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ANALYSIS OF THE N-WAVE OF A SLENDER 5UPRSONIC PRJECTIVE

by
D. H. Steininger and F. D. Bennett

Ballistic Research Laboratories

1. INTRODUCTION

1.1 Interferometric Method of Analysis

Interferometric investigation of the fluid flow around a supersonic

projectile in free flight gives a quantitative record of the density over

the entire flow field.o / Experience shows that the reduction of fringe

1/
R. Ladenburg, High peed Aerodnamics and Jet Propulsion, (Princeton
Uniwrsity Press, 154) Vol. Yo Section A, 3.

shift to density values for an axisymmetric flow is a cumbersome and time

ooncmsing process because, in general, the relationship between fringe

shift and density at a particular point is not simple. It is useful#

therefore, to find flow regions for which some intrinsic property can be

determined directly from the measurements of fringe shift.

An interferogram of a supersonic cone-cylinder shows two regions which

have conspicious symmetry of fringe shape, suggesting the possibility of a

simplified analysis. The first of these is the well studied WA region

H. Giese, F. D. Bennett, and V. E, Bergdolt, J. Appl. Phys. 21, 1226
(1950)

J. H. Giese and V. S. Bergdolt, J. Appl. Phys. 31, 1389 (1953)

V. S. Bergdolt, J. Aeronaut. Sci. 20, 751 (1953)

J. Do COle, 0. E. Solomon, and W. W. Willmarth, J. Aeronaut. Sci. 20 627
* (1953)
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near the cone in which the fringes are nearly straight and parallel. The

flow here is characterized theoretically by the fact that the physical

variables are constant along straight lines through the vertex. Assumption

of this flow regularity leads to a method of plotting fringe shift which

verifies in many instances the close approximation of real flows to idealized

conical flow.

The second of these regions lies between the front and rear shock waves

at rather large distances from the projectile axis. Here the fringes have a

gentle curvature and a similarity of shape which changes only slowly as the

distance from the axis increases. This similarity suggests an underlying

simplicity of the fundamental flow field. Experiments of Du Mond et aloshow

J. W. Du Mond, E. R. Cohen, W. K. H. Panofsky), and E. Deeds, J. Acoust.
Soc. Am. 18, 97 (1946)

that at large radial distances and parallel to the axis, the pressure profile

consists of a sudden rise at the front shock followed by a linear decrease to

a value below free stream and then a sudden rise at the rear shock. The curve

so generated has the shape of a capital N, hence is given the name "N-wave".

1.2 Scope of the Paper

Using the results obtained by G. B. Whitham in his improved linearized

theory for slender, supersonic projectiler, we derive here an analytical

J1 0. B. Whitham, Com. Pure and Appl. Math. 5, 301 (1952)
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expression for the fringe shift in the N-vave region. We Investigate the

aoe obvious properties of this function and close vith an account of re-

Iminaa7 experiments designed to test Its validity.



90 Oonfeme of Awsnal Na!hmatiabm "

2. TURMY

2.1 The Fringe Shift Integral

If x, r are the polar cylindrical coordinates of the axisymetric di.-

turbance and the front tip of the projectile is at the origin with the line

of flight along the positive x-axis, then the fringe shift 8(x,r) is related

to the density p at (x,r) byw

8(x,r) - (2-1)
x 2 _21/ 21r (t2 - r.)

F. D. Bennett, W. C. Carter, and V. E. Bergdolt, J. Appl. Phys. 2 3, 453 (1952)

K is the Gladstone-Dale constant, ). the wave length of the light in vacuum, p0

the free stream density, and rN is the outer radius of the disturbance at x.

t is the variable of integration in the r direction. As in Figure 1 the fringe

shift at (x, r) is determined by an integration of the density values found

along the line from r to r .
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An inversion of Equation (2-1) allows the reduction of fringe shift

measurements to density throughout the flow field. Such a reduction does

not interest us here; for our purpose is to obtain in the N-wave a functional

description of (p - po) and from it derive an expression for the fringe shift

in that region.

2.2 Improved Linearized Theory

The linearized theory of von Karman and Mooregfor a slender, supersonic

Th. von Karman and N. B. Moore, A.S.M.E. Trans. 54, 303 (1932)

projectile gives solutions which are good first approximations to the actual

conditions at the surface of the projectile but which fail as the distance r

increases. This failure arises from the fact that the Mach lines are parabo-

las in second approximation, while the linear approximations to them are

straightj and although a curved Mach line intersects a straight one at the

surface of the body, the curves diverge with increasing r. The improved

theory offered by G. B. Whithu='makes the linear solutions uniformly valid

over the entire field by associating them with the appropriate second order

Mach lines. This improved theory still is based upon a first approximation

to the potential flow equations and, like linear theory, neglects terms of

order u 2 , v 2 where u and v are the mall perturbation velocities in the x

and r directions. Nevertheless it has the additional advantage over linear

theory that the existence and position of the shock waves are predicted.
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With this background, we now list and discuss those results of Whitham

which we intend to use. Equations which appear in Whithamts paper will be

identified by the notation Wh ( ).

1. The shock waves. At great distances from its axis the supersonic

projectile produces two shock waves, both extending to infinity. The

equations for the shock waves at large r are from Wh (43)

1/
x - Yo (2-2)

where the upper sign represents the front shock and the lower sign the rear. 1/2
shock (a - (M2 - 1) and A and yo are constants related to the body shape).

The straight line x - Cr + y and the two shock waves interf the x-axis

at yo. By inspection of Equation (2-2) one sees that the front shock wave

lies ahead, and the rear shock behind the straight line by the amount ArI/ .

Thus the horizontal distance between the two shocks is 2ArI/ . If the proj-

ectile is slender, both A and y0 can be calculated theoretically from body

shape (Cf. Wh (21) end Wh (43)).

2. The pressure distribjion. When r is large the pressure distribution

between the shock waves Is by Wh (71)

(p- pO)/Po _ VMk'1() "1/2 r "1 (Cnr - x + yo) (2-3)

where k- (V+ l)I42"1/2 "3/2. k is the disturbed, a Po the free stream

pressure. Notice that along a trace of constant r the pressure difference,

P - Po, decreases linearly with x from a positive value at the front shock
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to an equal negative value at the rear shock wave. Midway between the shocks

on the straight characteristic x - ar + y0 , p - p0 . The pressure slope,

jW(kr)'1(ax)"1 /2, depends only on the flow constants and the distance from

the axis, and not upon the shape of the body producing the disturbance.

2.3 Density Distribution in the N-wave

We now relate p - p0 of Equation (2-3) to p - Po of Equation (2-1).

Despite the seeming simplicity of this program, some care must be exercised

to assure an approximation consistent with that of linear theory.

It can be shownl1-that the entropy may be considered constant across a

1'M. A. Heaslet and H. Lmax, Hie Speed Aerodyamics and Jet Propulsion,
(Princeton University Press, 1954) Vol. 9, Section D, , p

shock wave if third and higher order powers of the perturbation velocities are

neglected. We neglect second and higher powers and may, therefore, assume that

the flow behind the shock is isentropic. The adiabatic gas law applies, thus

P/Po - (p/po)l/(. (2-4)

Expanding (2-4) in Taylor series around p Po-

2 r
PP + + -(l +o

in Wh (66) whitham finds that

P " Po=o()
PO-
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so to the linear approximation

pAO - (p/p -1/V' . ( )

and

P-O0 " 6(PO- (2-5)

If ve substitute Equation (2-3) into Equation (2-5), we find that

o -- 0 (2m)-l/ 2 r-1 (r - x + yo ) . (2-6)

his is the density distribution in the N-v.ve region. Along a trace of con-

stant r, its profile has the same characteristic shape as the pressure curve.

2.4 FrI " 'hift in the N-wave

Combinin Equations (2-6) and (2-1), ve obtain

t +y) t t (2-7)X(~) k.I ar (t 2  2 2) 172

Here x is constant along the path of integration from r to r.. Regrouping

terns and using Piercels Equations (133) and (126b) we find
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M%/ /2 r2 11/2,

8(x,r) 0 Li9 .. jG!.l N (L J.)n [r ( 2 l

rN is related to x by means of the front shock equation

x "CN + Yo - AN (2-9)

Uquations (2-8) and(2-9) predict the fringe shift in the N-wave.

2, .. Behavior of the Fringe Shift Expression

We examine the variation of 5(x,r) along a trace r - constant as x

increases from x. to xS . xN and x. lie on the front and rear shocks,

respectively. xO lies on the line x - r - yo, halfway between xN and x.

(See Figure 2)
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Lot r(I)- 6 2  1l) /, g()- in[ + (1 2 _) 1/fh R- X -y)/cxr,

vhere I -r./r. For ##rticular flow the magnltude and sign of J is

determined from Equation (2-8) by the term in the curly brackets viz.

Examine R. By comparison with the equation of the straight character-

istic

1 x xo
Il if X a

0

Thus R increases nonotonically vith x from a value less than 1 at the front

shock to a value greater than 1 at the rear shock. From the equation of the

front shock wave

1 - (A/a)r'-3,/4 Al + (AIa)r"3I4 "

The variation of f(I) and Rg(l) with I is shown in Figare 3 for R4 1.
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The curves have vertical tangents at - 1 and intersect at no other point.

When R)1, they are related as in Figure 4. In addition to their

intersection and common vertical tangent at 9 a 1, they interseet at one$

point, say - . 5. increases as R increases.

We can now examin, the combination of functions {f - Rgj A As x

increases, so does R,, and (w-R?1) .

When xjx 1_z o , R.f1, so f >g. Tberore, 6 is positive In the

foreud portion of the N-mve.
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When x0 < x, xs , R) 1 and

fV Rg if Z t=N

When x is Just greater than. Xo, g c, sof is positive. But it is possible

that as x increases, Ic increases faster than t. If it does, then the con-

ditions ft.1 fc can occur and S will pass through zero to negative values near

.the rear shock wave. The proof that ) L (f) is too complicated to be

attempted here. We resort to calculation to establish the behavior of $ in

the rear portion of the N-wave.

A calculation of vs. x from Equation (2-8), using representative values

of A, yo and the flow constants, yields a curve that is similar in shape to

the dashed line in Figure 6. Computations made at several values of r show

that the curve decreases in amplitude as r increases. The zero of the 6

curve occurs about 3/4 of the way between xN and x., no matter what the value

of r. This fact and the occurrence of the negative fringe shift will be

clarified by a deeper analysis now being prepared for publication.
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3. PRELIMINARY IXPERIMNBTAL PMULTS

3.1 The Slender Cone-Cylinder

We select for this investigation a cylinder of .225-inch diameter with

a conical tip of 200 included angle. This projectile is both stable in flight

and slender enough to meet the requirements of slender body theory. A com-

parison of the results of Whithamts theory and the exact adiabatic theory of

flow past a cone shows reasonably good agreement for included cone angles up

to 20 °.7

5.2 Instrumentation

To obtain quantitative data the projectile is fired from a caliber .22

rifle approximately along the axis of an inclosed free flight range. The

flow is observed through optical glass windows at the interferometer station

of the range by a Mach-Zehnder interferometer with an 8" x 10" working field.

For the experiments reported here an interferogram (Figure 51 is taken of the

flow around the cone-cylinder at a Mach number of 2.25.

In order to record the disturbance as far from the axis as possible the

gun is aimed to place the projectile near the edge of the picture. Fringes

are adjusted to lie parallel to the trajectory.

Projectile velocity is measured between a pair of stations served by

0.1 - Mc chronograph counters triggered by impulses from photocells which

respond to fluctuations in light screens throu& which the missile -asses.

40.S caption for this figure should read as follows$ Intaewogram of 20P
included aMles cal. o22. oone-cylinder at N a 2925# po a I atse,



Figure 5
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3.3 Measurement of the Interferogram

To interpret the interferogram we measure fringe shift 8 along the path

traced by a fringe between the shock waves. If r is the radial distance to

the disturbed fringe at a certain point (x,r) and r the distance to the

same fringe in the undisturbed region in front of the shock, then 8- (r- ro)/A,

where A is the average distance between undisturbed fringes. The measurements

have an estimated accuracy of + .06 of a fringe. Although fringe shift along

a constant r trace is discussed in 9 2.5, it is more convenient to measure

fringe shift along a fringe curve. Because the fringe curve deviates from

r - constant by only a small percentage of r, the behavior of 5 along the

fringe is qualitatively much the same as that along the line r - constant.

3.4 Results

A comparison is given for ro- 10 diameters (Figure 6) between 5 measured

along the fringe curve and 5 as it is predicted by Equation (2-8). The

measured 5 is about .2 of a fringe greater than the predicted 5 at the positive
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Peak and .3 of a fringe lover than predicted at the rear shockI it become

sero one half unilt ahead of the predicted curves These discrepancies give

the imression that the actual pressure profile In this region is shaped a"

In Figure 7, the curm lying above the I-wave profile neaw the front shock

and 'oelov at the rear shock. A pressore profile taken K ong a trace only

& few diameters from the body' and passing trough the conical region would

show the pressure rising for a short distance behind the front shook and.

then falling rapidly below free stream In the ezpaslion region coaf off the

shoulder of the projetiloo An Ihim profile dagouerates with increasing r

to the final linear shape of the N-wave, It passes throu theitemdit

shape of Figure 10. XvyLdsUty wo mast ake observations still farther maw

from the projectile axis to measure fringe shift In the fully dsveqapd

X-wve.TS
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3.5 Future Experiments

Experiments are under way to launch a very small diameter projectile (on

the order of 1/16 inch) in order that the disturbance can be measured inter-

ferometrically in regions at least 50 diameters from the axis. Sub-caliber

(less than .225 inch in this case) projectiles are made to fit the rifle bore

by encasement in a plastic holder, called a sabot, which separates from the

projectile after leaving the muzzle of the rifle. Difficulties arise because

during separation the sabot imparts a certain amount of angular momentum and

initial yaw to the projectile, and causes a body of borderline stability

(such as the 20° cone-cylinder) to yaw violently or tumble in flight. This

problem makes it desirable to use a more stable projectile than the cone-

cylinder. A sphere is a practical choice. It is stable, easily saboted,

and can be readily obtained in almost any size.

From a theoretical standpoint it seems possible to use the disturbance

from a sphere to verify the predicted N-wave fringe shift. Whitham, in an

earlier paperW, shows that the pressure profile between the shocks far

G. B. Whitham, Proc. Roy. Soc. A201, 89 (1950)

enough away from any supersonic body is linear and that the equation of the

front shock is similar in form to Equation (2-2). We infer, as Lighthill

has done-W. that Equations (2-2) and (2-3) from Whitham's slender body theory

M. J. Lighthill, HgS ed Aer cs and Jet Pro sion, (Princeton
University Press, 195) Vol. 9, Section , ,
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appy to the disturbance sufficiently far from the axis of any supersonic

projectile. We will attempt to substantiate this inference in proposed

experiments with spheres. A future paper wll give a complete account of the

the results of these investigations.



ENGRAVfING PRESSUHS POR ROTAING BANDS
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2bo principal now result of this report concerns the noai engraving
of a inwao Inset band of rectargular croase-section by a flat,, rigid die*
At ontote has been fbwd for the avrege norol pmossr required to
oommtnui tUs enp'SYin process In the early stages. This estimate depends
an the init4 ia M.Im of die ad boad and the yIeld stremgth of the
band oworal
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I11TRODUCT ION

In this report we shall consider the behavior of a rotating bwa
under the engraving action of the rifling in the forcing-cone region of
a gun tube. In order to gain insight into the fundamental forces at
work during this ent ravin. action, we idealize the problem in the follow-
inLg ways:

(a) The band is imagined as unwrapped and laid out flat.

(b) The band is taken as a colid rectangular block, of infinite
length in what would be the circumferential direction of the shell.

(c) Since the forcing cone anl, le is small, we assume that the rAgi
lands of the rifling move vertically downward onto the band.

(d) The lands and grooves of the rifling occur periodically in the
circumferential direction; consequently, it is only necessary to consider
one band and a half groove width on either side of it as the fundamental
sone.

thus we consider the geometry shown in Figure (1). A solid ban of
ductile material is set into a surrounding rigid encasement, and a riaid
reot ar die is )ushed down into it by some outside aency, We want
to find out how muh pressure must be exerted in order to push the die
any desired distance into the band. The coordinate system (fixed in
space) is shown in Figure (la). (Figure near end of ts mmmuscript.)

We shall assume that the band material behaves as an ideally plastic
solid (no work-hardening), and that the loading takes place slowly enovgk
so that inertia effects may be neglected. Further, the material is as-
sumed to obey Tresca's yield criterion and flow rule, and finally, we
suppose that there are no friction forces between the land and band
materia

In a previous report, NO, we used the limit design theorems of
ideal plasticity to find an upper bound on the pressure required to iui-
tiate normal engraving of a band of any width and any clearance above
te-surrounding shell body. In general, this upper bound depended on
the band width and clearance as shown in Figure (2). Since publication
of N], a slight improvement has been made in the upper bound for wider
bands, and this is incorporated into Figure (2). In the present report
we are concerned with estimating the pressure required to keep the en-
graving process going at any stage of indentation, i.e. not only the
initial engraving, pressure, but also the pressure at any later time is

*See Bibliography.
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In the next section we state the limit design theorems of ideal plas-

ticity, and the third section gives the principal now result of this report,
namely the derivation of an estimate of the normal pressure needed to con-
tinue indentation of narrow bands in the early stages. That is, it siles
a complete prediction of the engraving pressure during the early history
ofthe engraving process. Section IV gives a short discussion of the results
and the method used to obtain them.

T ,U LIIT DESIGN XOaMS

We state these theorems in the somewhat restricted form that they take
when-applied to inset bands of an ideally plastic material obeying arscas
'yield condition and flow rule and loaded normally by a flat die which exerts
no friction force on the band mater.4l. More general statements and proofs
of these theorems may be found in (ij and [9] and some additional remarks
are available in (3 .

First we must make some definitions. Collapse is defined as the state

in which, for the first time during the loading, the die can appreciably
indent the band under constant normal pressure, provided the geometrical
changes in the band are ignored. A kinematically admissible state in defined
as a state of velocity which satisfies 1) all boundary conditions on veloci-
ties, 2) the incompressibility condition and 3) the condition that the rate
of work of the external applied load equals or exceeds the internal rate of
energy dissipation. If, (as in the present report) the assumed velocity
state consists of zones of rigid body motion separated by surfaces of tan-
gential velocity discontinuity, the internal dissipation rate ijSD K AV d

4 D9

where I is the yield stress in pure shear, AV is the magnitude of the vec-
tor velocity change across a surface of discontinuity and the integral t

taken over all discontinuity surfaces. A statically admissible state is
defined as a state of stress, which satisfies 1)the equilibrium conditions' 2)
the yield condition and 3) the boundary conditions on stresses.

Tbo two limit design theorems are as follows:

(I) Collapse will not occur until the largest values of the surface
loads have been reached for which it is possible to find a statically

admissible stress state.

(11) Collapse will occur under the smallest value of the surface

loads for which it ts possible to find a kinematically admissible velocity
state..

TYhs, the load corresponding to any statically admissible stress state
Is a lower bound on the true collapse load, and the load corresponding to any
kinematically admissible velocity state is an upper bound on the true collapse
load.
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We point out in pasr, ng that theso theorems only apply to problems

having certain generAl typ ee of boundary conditions, and that these
conditions are satisfied by the band both in its initial configuration
and in the assumed deformed configurations. As stated these theorems
consider collapse to occur at constant load and neglect the change in
boundary shape as time goes on; that is, they give bounds on the load at
the first instant of uncontained plastic deformation.

THI PRCSSURE HISTORY IN NORMAL ENGRAVING OF NARROW BANDS

In this section we restrict our attention to bands that are narrow
enough so that during engraving the displaced material moves out the
ends of the band and does not flow up around the sides of the die, i.e.,
the material always and everywhere deforms without motion in the x-direc-
tion, see Figure (la). We may also add that if some outside agency prevents
the material from flowing up around the sides of the die, the displaced
material will all flow out the ends of even a wide band. This is not a
far-fetched situation in practice, for most guns in current use have

(111.1) diameter of groove bottoms > band diameter.

that is, there is no clearance at all between the groove bottoms and the
top of the band. In such cases almost all the flow during engraving will
be longitudinal; the only transverse flow will occur in the later stages
of engraving and will involve the metal which has at an earlier stage
flowed longitudinally into the cannelures.

In estimating the pressure necessary to continue engraving at any
stage, we shall use the second limit design theorem at successive instant@
of engraving, Just as we used it in [4] for the initial instant of en-
graving. Ve recall again that this theorem gives us an upper bound on
the load that produces collapse, collapse being defined as a state in
which for the first time during the loading program uncontained plastic
flow can take place under constant loads if the simultaneous geometrical
chanres are itnored, see, for example, U j . Suppose we know the correct
deformed geometry of the band at any inetant (say, t); then we choose a
kinematically admissible state of deformation, and this gives us an upper
bound on the collapse load for that instant. If the kinematically ad-
missible velocity state is a good approximation to the true mode of defor-
mation, the upper bound will be a good estimate of the collapse load and
the accompanying change in shape of the band will be accurately given to
us for a brief ensuing interval of time by the chosen velocity state.
This leads us to a new deformed geometry at time t * A t, and we may
imagine the whole process, choosing a kinematically admissible state, find-
ing the new estimated collapse load and mode of deformation to be repeated
at time t + A t. If this can be done starting from the initial moment of
collapse and kept up for a number of intervals of length At, the pressure
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history curve will be approximated by a discontinuous set of horisontal
lines. If the analysis can be carried out letting At-0 we shall get in
the limit a continuous approximation to the pressure-history curve; if,
fortuitously, we should happen to guess the true velocity state at each
stage, we would get the true pressure history curve.

We shall use the idea sketched above to got an approximate pressure

history curve. In deriving our estimates, we shall use at every stage
velocity states like those used for narrow bands in [43.

Oall Li and Hi, respectively, the band's initial half-width and
clearance; similarly L and H are the half-width and clearance at any
later stage. During engraving the value of H decreases from Hi, and the'Li Hi . I o ~
value of L increases from Li . We define G U - and C If for any

0, 0 is sufficiently small the state of deformation will at, py later

time be chosen as shown in Figure (3). For larger values ofi , however,
the state of deformation will be chosen as shown in Figure (4i), for a

short time after the beginning, but, as the die descends further, the
overhanging lip will eventually strike the surrounding shell body see
Figure (5), and the state of deformation becomes as shown in Figure (3)
agin. It is then clear that two types of deformation may be distinguished

depending on whether the deformed metal comes into contact with the shell
body or not. Vhen it does not, as illustrated in Figure (4), we shall
call it an optimm flow, and when it does, as illustrated in F1gor (3),
we shall speak of constrained flow. We shall call - A fl and the time-

like variable which measures the progress of events will be chosen as

the penetration, 7 a 1- g .

We first deal with the case where the flow is initially constrained.

Mw mode of flow at any stage io shown in Figure (3). Internal dissipa.

tion, calculated for a half-land width and half-band width, takes place

on the bottom and side of the sons of flow.

Bottom: AV =V o coo a

Area of the Bottom a a L see a

KaL Vo
Dissipation - Kin o

sin a co8oa

Sidet AV = Vo coo a
1

Area of the side a -Li' tan a

KV L2
Dissipation a -

2 cos a

Zzternal work rate a PVoaL
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Therefore the pressure requires for continued indentation satisfies

Pa L(111.2) T <  - + --os OO8 7 n 2 a

Incompressibility requires that

(111.3) HL = HLis

and the angle a is given by

(I11.4) a = tan-'(L).

Combining these results gives (after some algebra)

24
(111.5) <C + +

k - C

These results are plotted for G = 1, 2 and 3 in Figures (6), (7)
and (8) in the form of curves of F against 77 = 1 - e with C as parameter.
It is almost obvious that if the fLow is constrained initially, it can

never become optimum under the assumed modes of deformation, but a simple

proof may be desirable and will be given shortly.

We now deal with the somewhat more complex case where the flow Is
:optimum to begin with. In this case we assume the state of deformation
looks as in Figure (4). The dissipation is as follows:

L2
Side zone dissipation = kVo coo a'.L.L tan a

2

Bottom zone dissipation = kV ocoo a . aL1 seo a

External work rate = pV0 aL

The pressure required to continue indentation therefore satisfies

(111.6) E - LL _o F +I

k (LI cos a e si2
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The value of a is found by setting the partial derivative of the right-
hand side equal to zero, giving

(11.7) sins & + S sin2 & _1 = O,2

the same result as was obtained for the initial indentation problem In E'

We call the solution of (II1.7) ao . The value of L during the optimum
stage of indentation is given at any time by

(IIl.8) L = Li + (Hi -H) otn a o

This type of deformation continues until the overhanging lip strikes
the rigid shell body, i.e. until

(111.9) L, tan a= H

or

0 tan a,

C

From this point on the flow is constrained. The value of a jumps to

the value given by

(11.1L) tan

or, (using (111.8) and (11.10))

(111.12) % = tan. -1 tan %).

.From this point on the pressure obeys equation (111.5), and L Is given
by (III.3).

The complete pressure history estimate is shown in Figures (6). (1)
and (8) for On 1, 2 and 3 respectively. It will be noted that a dis-

continuity in pressure occurs for all flows that are optimum at the start,

the magnitude and t ime of the Jump depending on the original geometry of
the band. Analytically, the time of the Jump is gives by (111.9) where
"*o Is the solution of (1I.7); the magnitule of the jump is given by

%J~~on tan~ al V=- Wan V " tn0
Xk G C 2 C C-

(111.13) 0 sin ao a
-C cos82 o0 in a
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In order to facilitate the calculation of the total load on the land,
given by

(111.14) Q =, 4pa Lg

we have included on Figures (6), (7) and (8) curves of L as a function of

'7. When the flow is optimum, we have (so@ 11.8)).

L
(11X.15) - =G + on otnia o I

we see that L varies linearly with 77 . When the flow is constrained, we
a

have (see 111.31

L 0(zzz.16) -=

and the variation of (L/a) does not depend on 0. For given G and 0
values, the curve for constrained flow of course intersects the optiamw

flow line at the point of pressure discontinuity (provided a discontinuity
occurs).

We now give a simple proof that if the flow is constrained initially,
it can never becosm optimum at a later time under the assumed modes of
deformation.

We rewrite (111.2) as follows:

k - cooa in a

the value of d which minimisem this (we call it Co ) satisfies (oomupre
(11.6) and (III.7).

(111.18) 9 6 +aino  sins o -1 a 0

.It is clear that odepends on , and that ford<lwe have

(111.19) ao W >. &0 (1)

Now if the flow is initially constrained,

(1z1.20) tan ao(1) >.HILl
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But for e<1, H(e)' < HL  and L(e) > Li O Combining this with (1II.19)

and (111.20) we get that for f < i

tan a •(f) > tan o(1) > L >
Ll L(f)

The first and last expressions in this continued inequality give usthe

statement that the flow cannot become optimum for . < 1, I.a. for q, >e.

This completes the proof.

DISCUSSION

We first make several comments on the results obtained.

(i) 7or optimum flow, although the estimated indentation pres-
sure decreases during penetration, the total lcad on the land stays con-
stant, as is apparent from (111.6).

(ii) Geoerally speaking, increasing G causes the whole curve
of pressure history to be raised and increasing C causes the curve to
be lowered.

(i1) Por the cases where optimum flow occurs initially, the
qualitative behavior of the pressure jump is as followss Increasing 0
decreases the magnitude of the jump and makes it occur earlier in the
process, and decreasing C has the same effect.

(iv) We want to re-emphasise that all these results depend first
of all on the assumption of no flow in the X-direction. Naturally for
sufficiently wide bands and for small clearances this condition will be
violated, and we would not expect very good results in these cases.
Ve have carred out calculations for some of these cases, however, be-
cause it is of some interest to see how much error is introduced, and
because the results may be useful for the case (mentioned previously)
where external constraint prevents flow in the X-direction.

It still remains to clarify a point concerning the theory under-
lying this method of finding the pressure history. The point is that the
estimate of the pressure history given here is not necessarily an upper
bound on the actual pressure at any stage of indentation except the first
instant. The reason is, of course, that at no instant after the first
can we be sure that we have the correct geometry. I.e. at each Instant
we find an upper bound on the pressure necessary to continue Indentation
from the assumed geometry; there is no positive assurance, however, that
the assused geometry is sufficiently close to the actual geometry so that
the pressure found is an upper bound for deformation from the actual geom-

etry except at the initial instant.
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therefore it 'is desirable to view theme results as follows8 if we
Make good estimates of the mode of deformation at each instant, the es-
timated pressure will be close to the true pressure at any stage although

we no longer can say that it is an upper bound. Some unpublished exper-
imental work on normal engraving done at Watertown Arsenal by Mr. Z. N.
Negge indicates that the velocity state used in deriving the results of
this report io reasonably accurate. We present these results at this
time, therefore, as an approximation to the true pressure history for
narrow bands.

We may note in passing that Onat and Haythornthwaite CS have recent-

ly*(and quite Independently) used a method, intuitively identical with the

one used here, on the problem of finding load-carrying capacities of cir-

cular thin plates at large deflections.

Finally we wish to call attention to some normal engraving experi-
ments being conducted at Watertown Arsenal Laboratory. the results of
these experiments should permit a much more sensible assessment of the
present results than is now ssible.
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* ANALOG COMPUTER SIMULATION OF AUTOMATIC WEAPONS

•by
E. H. Jakubowski

Springfield Armory

INTRODUCTION. An electronic analog computer is essentially a device used

to solve differential equations. The differential equations may be either

linear or non-linear.

The computer consists of a collection of circuits and circuit elements#

such as amplifiers, relays, passive electric elements, and control circuits,

which are capable of being arranged so that the circuit voltages follow a

particular differential equation. The computer then becomes an electrical

"model" of the mechanical system being studied.

The analog computer is used as a design tool. The process of supplying

information to the computer consists of setting potentiometers and other cir-

cuit elements, and arranging special function generators. These settings and

function generators correspond to coefficients and functions in the equations

which describe the system to be studied. The output information, or solution

provided by the computer is usually in the form of paper-chart records. In

the study of an automatic weapon, displacement, velocity and acceleration of

various components of the system are recorded as functions of time

The heart of an analog computer is a high gain d.c. amplifier, generally

referred to as an operational amplifier. When an operational amplifier is used

with appropriate combinations of input and feedback impedances, certain

mathematical relationships may be obtained.

Figure 1* shows the manner in which an operational amplifier is used to

perform a general mathematical operation. When the drift voltage ed" and grid

current wig" are taken into consideration, the application of Kirchoff' s Laws

*Figures have 'een placed at the end of the manuscript.
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will yield the general equation for the output voltage "eo0 as a function

of the input voltage, drift voltage, and grid current. But as

ig< 5 X 10 "I 1 amp so

ed -' 500 x 10- 6 volts (with statilization)

and A p 15,000

the general equation may be simplified such that

e - Zf/Z i e i  where Zf a feedback impedance

- input impedance

Figure 2 shove the application of this equation. The upper diagram shows

the manner in which sign changing and multiplication by a constant bay be

achieved, while the lower diagram shows the use of an operational amplifier to

perform the operations of addition or subtraction.

The upper diagram of Figure 3 shows the manner in which an operational

amplifier is used as an integrator. It will be noted that in the integrator

there exists a constant "K'e This "KO is equivalent to the initial charge on

the capacitor and is analogous to any initial condition which may appear in

the proUlem under consideration.

The lower diagram shows the use of the operational amplifier to perform

the operation of differention.

WEAPON OPERATION. Figure 4 is a sketch of a revolver type authomatic

weapon, in which the principal recoiling parts - the drum support, slide, and

receiver - are represented by their masses, M1, M2, and M3, respectively. The

drum, which is fixed to the drum support but is free to rotate, is represented

by I, its moment of inertia.

Springs used in this type of weapon are recoil adapters, driving springs,

and mounting leaf which are designated by their stiffnesses K1 , K2 , and 13,

respectively. The displacement of any mass is dio ted by 0"4 with the
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* proper subscript.

When the weapon is in neutral position, the driving spring holds the

slide (M2) against the drum support (Mi), which consists of the barrel, dru

cradle, and drum (I). The drum is fixed in the drum support in such a manner

as to prohibit longitudinal motion (relative to the drum support) but permit

rotation. The drum has rollers on its periphery, at least one of which is

located in a cam which is cut in the slide.

When a round is fired, a force is applied to the drum support, which tends

to move the drum support rearward and the projectile forward. As the slide is

held against the drum support, the slide displacement must be identical with

the drum support displacement; i.e., we can consider the drum support and

slide as a lumped mass which exerts a force on the receiver by means of two

parallel springs, KI and

A short time after firing, the moving projectile passes over a gas port,

allowing the gas to expand into a gas cylinder, which causes a piston to strike

the slide and drive it rearward. When the piston strikes the slide the two

masses, M, and M, are separated and each mass is now displaced by an amount

which is dependent on the summation of the forces on. the individual masses.

This action is indicated by the force F2 .

As the slide is being moved rearward, it causes the drum to index. While

the drum is being rotated, t he slide transfers rotational kinetic energy to

the drum and stores potential energy in the driving springs (K2). When the drum

roller reaches the apex of the cam, it limits the rearward displacement of the

slide relative to the drum support, causing the slide velocity to be equal

to zero; i.e., the slide kinetic energy becomes zero.

With the drum roller at the apex of the cam, the drum now acts as a fly

wheel; therefore, the rotational kinetic energy of the drum and potential energy
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of the driving spring cause the slide to be moved forward in such a manner that

the drum is indexed into battery position. Some instant later, the slide arrives

into battery position, firing a subsequent round, thereby initiating another

cycle of operation.

During a cycle of operation the slide exerts a force on the receiver by

means of the driving spring and any friction that may exist. It also exerts a

force on the drum support by means of the cam. The drum support exerts a

force on the receiver through the recoil adapter. The summation of these forces

causes the receiver to be displaced if the stiffness of the mount (13) is not

infinite.

Although the various springs are represented by their stiffness Ki, it is

not implied that these K's are constant. Function generators are used to

simulate these devices, so that complete variations in spring characteristics

are permitted; i.e., complete load-displacement characteristics of the spring

can be duplicated and easily varied.

EQUATIONS OF MOTION. The kinematic system under consideration may be

described by the following equations of motion:

Case I ( 4+ M2) Xl + (Kl + K 2) (X1 - 13) - Fl(t) - Ff

(Ml + M2) X + (K1 + K2) (X2 - X3) - Fl(t) - Ff

1413 + Y(3 -"I) + K2(3 - X1) + K3X3" Ff

eCas I M1 X1 +K1 (X1 -X3 F1 t 2 ()+FcamIX
of

1422 + 2([ - X3) *F 2 (t) - FomI-

M h1+ K1( 3 - 1l) 4 K2(X3 - X2 ) + K3h3" Ff

Fcam X " 1 d2
- xl)

where M, - mass of Drum support

M2 - mass of Slide

M13 - mass of Receiver
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I - Moment of Inertia of Drum

K, 0 Stiffness of Recoil Adapter

K2 0 Stiffness of Driving Spring

K3 ' Stiffness of Mount

XI - Displacement of Drum Support

X2 - Displacement of lide

X3 n Displacement of Receiver

0 - Angular Displacement

Fi ( t - Firing Pulse

F2 (t) a Piston pulse

Ff - Coulomb friction between slide and receiver

Case I defines the motion before force F2 (t) is applied, while Case II defines

* motion during and after the time F2 (t) is applied. These two cases are

necessary if the displacements of the slide and drum support are to be identical

before the slide is separated from the drum support by the gas piston. As a

continuous record of the displacement of each individual component is desired

from the analog computer, the computer must transform the equations of Case I

into those of Case II by switching circuit parameters. This switching is

impractical from the standpoint of available equipment, therefore, to utilize

the equipment efficiently one assumption will be made; i.e., between the slide

and drum support there exists a single acting spring having a very high rate.

This spring will only act in compression and will exert a very high force on

the slide and drum supporft when the slide displacement relative to the drm

support tends to be less than zero. Upon introduction of this single acting

spring between the drum support and slide, the new equations of motion are as

follow:
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Nix, + KC(Xl - x2) + K1(X1 - X3) - Fl(t) F2 (t) + Fm X

M2X+ Kc( 2 - I) + K2(12 - X3) - F2(t) - Ff - Fcam I

M h+ "2(x3 - x2 ) + Kl( X3 - 11) + K313 Ff

~ Kd(X - vI )

It will be noted in these equations that the -firing force Fl(t) does not

affect the second equation directly, but is introduced into the slide equations

by the term Kc(12 - 1l) which requires that the slide and drum support dis-

placements will be almost identical when 12 tends to be less than I.

This relationship involving the cam force has been derived assum ng that

frictional losses are non-existent. This relationship also shows that manner

in which the cam force in the longitudinal direction is dependent upon the cam

shape.

PATH DIAGRAM. A patch diagram is the wiring of the analog computer which

is necessary to solve a particular set of equations. Patch diagrams utilize

a set of symbols to define mathematical operations as shown in Figure 5e

Numbers inside of the block indicate the magnitude of the feedback resistor

(in megohms) or capacitor (in microfarads) while numbers outside of the block

indicate the reciprocal of the input resistance in megohbm. When a number is

replaced by the letter "O, it will be taken to mean that the input is tied

directly to the grid of the operational amplifier.

The tentative patch diagram of a revolver type automatic weapon is shown

in Figure 6. Operation of the simulated automatic weapon is initiated by the

momentary closure of the push button switch "SW". The simulated weapon

operates automatically due to the pulse actuating circuit which is introduced

into the circuit when the slide velocity is negative and the slide displacement

relative to the drum support has some predetermined value which is simulated

by the voltage Oe*,
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The method used to synthesize the cam force is the same as that used in

automatic control systems, where a component is forced to move in accordance

with a preconceived demand.

Accelerations, velocities and displacements of the drum support, dramp

slide and receiver may be measured at the output terminals of the operational

amplifiers indicated in Figure 6.

AID TO A GN ISSIGN. The application of the analog computer to gun design

is in the kinematic analyses of the dynamics of the principle recoiling masses

of the weapon. This includes vibration problems, trunnion reaction problemsj,

effect of changing parameters on the rate of fire, and similar problems which

involve the time-displacement relationship between the moving masses. Once the

coupled system of masses have been set up on the computer, the design engineer

* is able to adjust the masses, spring constants, losses, and input functions in

such a way as to study the relations among these parameters and functions, and

their effects on weapon operation. The designer should be able to optimize a

set of parameters and make the best compromises to obtain several desirable

operating conditions.

The computer is regarded as a designer's aid, not as a replacement for

designers. It is not expected to eliminate the construction of prototypes of

new weapons. However, it should reduce the number of modifications necessary

on each prototype model. The computer should be expected to save money be

reducing design, fabrication, and testing time, because it is easier for an

engineer to vary a parameter by adjusting a knob on the computer than by having

a new component fabricated and tested.



NI N

+

op4

+

+
%two



34j7

1-

x0

a La

'CM
5Qrs



40

mi

I

U



*15

L

to



SIGN CHANGER X,

SUMMER a

INTEGRATOR

FUNCTION GENERATOR x K t

K

MULTIPLIER X X

noG

8USCI1LU UWD 10 330U VARIOUS MaOI F53TIONS



1110 6

~T TI Z A CH DI G AM FO 3X 1L T ON RE O TE F P Ap )I RE P



SOLIDIFICATION OF MOLTEN MATERIALS IN FINITE REGIONS

by

Amino Needlo
Picatinny Arsenal

1. The Smil-infinito Molten Mess.'

The exact analytical solution of the problem of solidification of a
semi-infinite mass of molten material has been obtained by N.N.H. Lightfoot.
The solution applies to a liquid mass originally at uniform temperature,
bounded by the plane x - 0, and extending to infinity in the direction of
x positive, the plane x - 0 being kept at 0C. Since convective currents
are assumed to be negligible, Lightfoot's solution can be applied only to
highly viscous molten materials. The author also attempted to solve the
problem of solidification of a molten mass in a slab of finite thickness but
was unsuccessful except for the case where the initial temperature of the
molten material is equal to its melting point.

In order to solve the problem of solidification one must consider the
effect on the temperature of the medium resulting from the flow of heat of
fusion that evolves during the change from liquid to solid. In the semi-
infinite mass, the medium solidifies from the boundary x - 0 and, in
Lighcfoot's analysis, the plane at which the transformation takes place is
regarded as a source of heat moving from the boundary toward an increasing
value of x. The position of the moving plane at a given time is determined
from the condition that its temperature is equal to the melting point of the
material. The mathematical solution for this case is obtained as follows.
The temperature at a point x, at time t, given initial temperature 0, with
the boundary surface x - 0 maintained at 09C, and neglecting heat of
fusion, is given by

V erf - (1)

where x is the thermal diffusivity of the material.

'N.M.H. LUshtos, "The Solidification of Molten See," Ponc. London 48Ab Soc.
(2), 31, (1930) 97
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The temperature at the same point z due to the heat of fusion Is ob-
taied by integrating from t - 0 to t the temperatures due to instantaneous

sources of heat:

vL . L f [ex z ft"" zp ( zd (2)J~ ' - .4tt))- ( -(t -)] d'(22 c t 4#c (t e

In (2), L is the latent heat of fusion and c is the specific heat of the

material. The position of the source of heat at time t' is represented by
the function f(t') which is determined from the condition

V 0 +VL . V (3)

with V the melting point of the material.

Lightfoot assumed a function

x - f(t) - 2k V,1 (4)

with k unknown. By substituting in (2) and (3) and through successive
changes of variable, he established that to satisfy the conditions of the

pcoblem, the unknown quantity k is to be evaluated from

V ,erf k + L f kek'erf k erfc k (5)

which is the mathematical form of condition (3) at the plane of separation

of solid and liquid.

While solidification proceeds, the temperature at a point x, <A t

(in the solid region) is given by

V, erf- " + L-- kek'erf Zi-_ erc k (6)

27(st c 2

and at xz3 2k > A (through the molten material) by

V.-- Oerf 'a + /L kekedkerfc za (7)
2C 2 VKt
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Equations (5), (6), and (7) consist of two distinct terms and show that
during solidification the temperature at any point is obtained by super-
posing the temperature due to the initial supply of heat (S) and the
temperature due to the heat of fusion (L) evolved during solidification.
A brief analysis of Lightfoot's results indicates other properties of the
flow of heat during solidification which can be applied to the solution of
the problem for other cases.

Equation (5) shows that at the surface of separation of solid and
liquid, temperature V, the melting point of the material, results by
addition of two terms independent of x and t: the two temperatures V,
and VL at the moving surface will be constant regardless of the distance
of this surface from the boundary.

In equation (6) the ratio of the two terms VO/VL is a constant for
all points in the solid region and coincides with the ratio VO/V L at the
plane of solidification. Therefore the ratio of flow of initial heat and of
heat of fusion,

4a~ /dVI
dx / dx

is also a constant at all points in the solid. The value of this ratio
depends only on the values of 95, V, L,and c of the material.

In equation (7), which applies to the molten region, the second term
at the right does not indicate flow of heat of fusion through the molten
material, but evaluates the amount of initial heat retained by the molten
material as a result of added flow of heat of fusion through the solid
region to the boundary. This second term will be referred to as (VL) 01
Since the first term at the right is identically equal to .0 only at infinity
(x mm, erfx z 1), one would obtain (VL), " - 0 only when x _. A more
definite value V at a point x,, with x,/2Vrf>3, is obtained if the point
is regarded as te center of a slab of thickness 2z.. In this case the
temperature is given by

S! I--sin (2n + Owr -(2n + l)2w2 kt/4x.3(-0 nO 2n+l 2 (8)
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With ;/12,*rt2!3, the result of (8) will always be equal to 0. But the
temperature at as in the semi-infinite region cannot be lower than the
temperature computed for x, as if it were the cener of a slab of finite
thickness and we may correctly conclude that when x/2 4 i

[ V9- 1 .m s aq& og o 0 (9)
An example of the various distributions in a semi-infinite mass during

solidification is shown in Figure 1.

2. The Slab 2a

In the case of solidification of a molten mass initially at uniform
temperature and bounded by the two plane surfaces x - 0 and z - 2& kept
at 00C, the condition V - VO + VLmust be satisfied at the two planes of
separation of liquid and solid moving from boundaries z - 0 and z - 2a
toward the center of the slab; the positions of the two planes (symmetrical
about the center x M a) at time t must be obtained accordingly. A mathemat-
ical treatment of the problem similar to that followed for the came of a
semi-infinite mass proves to be quite involved and has aot been followed.
As suggested by Lightfoot it is assumed instead that in the beginning,
solidification proceeds from each boundary independently and that the
position of the surface of separation of solid and liquid is the region
0~x <a is given by z - 2kri with k obtained from (5) as for the semi-
infinite case; the position of the plane surface moving in the region
a< z<2a will be given by z . 2a-2k,,r,1t.

According to this assumption, sad using the dimensionless variable

r -t

the three distinct temperatures which are superposed at a point x/s, 2kVT
are obtained from the following:

V- - i I- sin Us + Ow .e(2n + IN'rr/4 (0
n. 2n+1 2a

(yL) -LIE kek'erfk erfc 2&a-z (11)
S6 caNO
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CL - Lkek'erfkedck (12)

Because of symmetry, (11) can be regarded as being due to original heat
retained at z as a result of heat of fusion flowing to boundary z - 2a, and
(12) accounts for beat of fusion flowing to boundary z - 0. It is found that
the sum of (10), (11), and (12) is equal to V, the melting point of the
material, up to a maximum value r. which depends on the temperature at
z - a, the center of the slab. During solidification, this total temperature
is given by

v-u- -4-0- 1 sin (2n +)DE e-( 2 n + 1)'ur/4
or 2ai+1 (11)

+ 2 1LLf kek'erfk erfc 1

The maximum value r. for which (13) equals ,S, the initial temperature, is
the limit of the independent stage of solidification. When r - r,, the
surface of separation of solid and liquid will be found at

z./a - 2k V/ 'o (14)

The boundary conditions to be .satisfied during this first stage are obtained
from (11) and x - 0. As indicated previously in (9), when

1 >3,

(VL), can be assumed to be identically equal to zero.

From r - 0 to r -, r the total temperature distributions through the
solid sections bounded at x - 0 and at x - 2a will coincide with the
temperiture distribution obtained in the solid section of the semi-infinite
mass. The ratio of flows and ratio of temperatures, which are constant at
the sources and through the solid sections, will be expressed as follows:

d i + (.) ] = Vy + (VL) ,o (16)

dVL VL
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The various temperature distributions for a numerical example at
r - r., are shown in Figure 2.

For solidification in the range x, <x <a it is assumed that the
position of the plane of separation of solid and liquid is given by

x/a - -b + 2ka '1 r (17)

where b, ka, and r, are all unknown and must be determined from the
condition that the temperature at the moving plane or planes is always
equal to V. Also when r> r., heat will flow from the center x - a toward
both boundaries x - 0 and x - 2a, and the new function must reflect a
rate of solidification higher than the rate given by x/a . 2kvr'.

The condition of continuity of the two functions of r, x/a - 2k h "
and (17), at r, and of their first derivatives, gives two relations between
the three unknown quantities

o/a = -b + 2 ka Vtr. (19)

For solidification at x - a we have also

I=-b + 2 ka 1 'a-, (2D)

The new parameter ra appearing in (20) refers to time of solidification at
the center of the slab x - a and can be evaluated directly if the value of
VL at the time the two sources merge at x - a can be pre-established.

During the first stage VL at the source is constant but beyond x - ze
we may observe any one of the following trends:

(a) Temperature VL at the source increases
(b) Temperature VLat the source decreases
(c) Temperature VLat the source remains constant and equal to

"'_ kek' erfk erfck
C

as for the semi-infiite mass.
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For case (c), of constant VL , ra can be evaluated from

1 s (22+ O)w -(2n + l)ura/4
(21)

+2 LN kek'erf k erfc k

It is quite evident that ra will be greater for trend (a) than in (21) and
will be smaller for trend (b). Solving (18), (19), and (20) with the three
different values of r it will be found that rate of solidification (a) will
be lower than rate (c), while rate (b) will be greater than (c). But both
(a) and (b) are inconsistent with (c) since a higher source temperature can
be obtained only with a higher rate of evolution of heat of fusion or rate
of solidification, and a lower source temperature with a lower rate. The
only possible solution left is (c), with temperature VL at the source
constant through the entire process of solidification. This result indicates
that, in one-dimensional flow, the value of the ratios

d VO + (VL)b and v _ + (v,__)
dVL adV L

at any point in the solid and at the sources will be maintained till solidi-
fication is complete.

Is conclusion i can now be stated that, in a freezing mass, initially
at uniform temperature . and with bounding surfaces x - 0 and x - 2a
maintained at OC, the position of the plane of separation of solid and
liquid is the region 0< x <a is given by the two functions

x/a-2kvFr O<<r
(22)

x/a--b + 2ka,/r-r r. vr<ra

where the various constants and the ranges of r are evaluated from the
data of the problem according to the method specified above. The position
of the moving plane in (22) is expressed in terms of the dimensionless
variable r - t where x is the average thermal diffusivity of the material

in the temperature range V to 0 (in the molten range). The numerical value
of K is to be obtained from experiment.
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Complete solution of the problem for the special case 0i - V (that is,
when the initial temperature is at the melting point of the material) is
liven by Lightfoot. In this case the position of the moving plane through
the entire range 0< <a is given by

x/a - 2kfl (23)

where k is obtained from (5) as for semi-infinite mass. LiShtfoot's Sol-
tion implies a constant value of VL at the moving planes, as can be
verified with the following

V . L I I sin Oni+ 1)w e- 2 n + O)3uara/42 (24)

+ 2 L %/ kek erfk erfc k
c

and

ra -(2l)' (25)

Numerical examples of solidification in finite slabs are shown in
Figure 3.

3. Thw Cylinder end O. Sphere

The results obtained in the previous section furnish the basis for
solving the problem of solidification in an infinite cylinder 0 < r <a

and ia a sphere 0<r <a where the initial temperature of the molten

material is the same as for the slab 2a and the boundary surfaces are
kept at 0C. According to the property observed above, during solidifica-

tion in one-dimensional flow, the ratio of flow of original heat to heat of
fusion and the ratio of temperatures remain constant through the solid

from the boundary to the source. Because solidification in a cylinder and
in a sphere will proceed by radial flow, we find that at the surfaces of

separation of solid and liquid, and regardless of their distance from their
respective boundaries,

d[VO + (VLJOlc,s [v + (VL)#]1c,s (26)

d(VLI l,c,s (VLI l,c,s
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and
[VO + (VL)O + VLI I,,a - V (27)

The subscripts 1, c, and a stand for slab, cyliader, and sphere respectively.
The (VL), in cylinder and sphere is for original hest retained because of
beat of fusion evolving at radially opposite poim sources. From (26) and
(27), we have

(VL)l - (VL)c = (v.)s (28)

or a constant source temperature at the convergent surfaces of the cylinder
and of the sphere. Thus, the time rc when the cylindrical source finally

converges to the axis of the cylinder can be obtained directly from

V - 2# -  (--- e-anrc +2 L Oi kekmerfk + erfck (29)

n-i a.(az)n) c (9

and the time rs when the spherical sowce converges to the center of the
sphere is obtained from

V - (-)ne "(n+l)wsrs 2 L# kekedk erfc k (30)
a-0

The first terms at the right of (29) and (30) am temperatures due to
original heat.

According to another property of heat conduction we observe that when
solidification in the slab, in the cylinder, and in the sphere has proceeded
an equal distance from the respective boundary, the distributions through
the molten region of total temperature and of VO and (VL)s individually
will be equal. Mathematical proof is obtained with the known solutions

0 2n + 1 ,2a (31)

(V-) c  20 ; J-(raa) e-ansrc. (32)
a-0 J(as)

O). ?_4 ; (-I)' sin(a+ _)!! e-(a + l)2uars (33)
r n+l
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These solutions give temperature distributions throughout the three
geometries being considered, neglecting heat of fusion. With any gives
gradient (V#) I in a range

s z <2- ;,.
a -a - a

we can always find particular values of r. and r. such that the three
distributions coincide at all points within ranges

a-r x
a a

as shown in Figure 4. The three distributions will never cross each
other regardless of the values rl, r, and ro.

The distributioms of total temperature through corresponding moltea
rases coincide because they depend on the temperature at the limiting
surfaces. This temperature is V, the melting point of the material for al
three cases.

The distributions of (VL)# coincide because they reflect delay in
cooling due to the heat of fusion evolved during solidification. At the
linitiag surfaces or sources (VL)* is equal to VL while the ratio of flows
at points outside the ranges is the same for the three cases.

Finally, since the distributions (VL)q are continuous across the
sources opposite their origin, we find that at the limiting surfaces

MO)- = (vY), - (vO). (34)

For solidification at a given point, x,/a in the slab 2a, we evaluate
r from the two formulas of (22), and obtain from (31) the VO correspoadina
to this distance from the boundary. In (32) and (33) we substitute V'O
as obtaised from (31), and r, as obtained from (a - r,)/a - Va, and solve
for r.

Numerical examples of solidification in slab, cylinder, and sphere
are shown in Figure 5.
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* The principle of constant ratio of flows throughout the solid regions

can be applied to any slab, cylinder, or sphere cooling by radiation into

a medium at constant temperature. Comparison of the distributions VO
and V with the distribution obtained originally for the slab shows that

the property of coincident distribution through the molten ranges applies

also for these cases. The thermal properties of a container may be given

in terms of a heat transfer coefficient and the solution for the freezing
material obtained by the method outline above.

4. The Finite Cylinder end the Pusll.epiped

Solidification at a point P(rz) in the finite cylinder 1, a, with center

at the origin, will occur when the temperature V# is equal to that obtained

for the slab with the smaller of the two quantities

(35)

a

This method results from a comparison of the finite cylinder with the
infinite cylinder and the slab. Initially, at a point z - 0 ad r = a

solidiflcation will proceed as in an infinite cylinder. At a point z a 1

and r - 0 it will proceed as in a slab 21.

-A numerical example computed with

J. (ra) can -o Co. (2a + )v e +

S- san eJ(an) 251 1 21

is shown in Figure 6.

Solution for a parallelepiped is obtained similarly.
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ABSTRACT

One of the neaessary design features of a projectile rotating band is
that it must not be discarded in flight by virtue of the centrifugal forces
acting. One of the oemon methods of retaining the band consists of util-
lzng undercut baud seats thus In effect, restraining the band from outward
movement. In the present paper the elastic stresses In a band, thus con-
strained, are determined for both the quasi-static loading condition (l.o.
slowly applied centrifugal forces) and for the dynamio case (i.e., suddenly
applied centrifugal forces). As expeoted, the dynamic ease yields stresses
just twice the quasi-static cse. In both these nalyes the band is con-
sidered as a ben on an elastic foundation.

As a limited extension of these elastic analyses, the non-elastio case
of an unconstrained band (applioable also to a long constrained band) is
analysed asuming a stress-strain ourve of the form c a ke'1, giving rise to
a non-linear differential equation. A hodograph is plotted and the required
information related to failure or retention of the rotating bad Is obtained.
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S= Stress*

= Strain

x, , : Constants in the stress-strain law

y = Radial deflection of mean radius of band

x. = Longitudinal position along band

Z = Young's modulus

V z Poisson's ratio

D k
I' = Moment of inertia of cross-seotion of bern of width-Aa = - A

24,
As x Angle subtended by beam element

D = Instantaneous mean diameter of band

Do  =Initial mean diameter of band

p(x,t)= Loading on beam (lbs/inch)

a(x,t)- Centrifugal contribution to p(xt)

b(x,t) Restoring load contribution to p(x,t)

o(xt)- Inertial contribution to p(x,t)

q -Centrifugal loading (lbe/in. 2) .-h
g

qi = Generalized coordinate

h : Thickness of band

p = Density of band material

.g = Gravitational constant

t = Time
= Tie{fr od dU

to  = Time for ! (or ) ) in Case III to initially beoe srot

'"ubscripts & 4nd f iv ioa lowftIiav hd tWenael, resat.ewly; subw#cr4 A Lnitcates
WXiau. Vhtml of stress.
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x Rotational speed of band (radisns/soo.)

4N a Constants (see. q. 5)

.. [1-2,(Ii-i-T 4

Radial distance from middle surface

P.E. = Potential energy

L1. Kinetic energy

Qi Generalised forge

2 ,TN~12

U * Displacement par amter (1 S By
Do

J. = Load paramter • • a

4kg
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INTRODCTION

The present paper is concerned with the problem of the failure of
rotating bands during the firing of projectiles. The primary function of
such bands is to engage the gun tube rifling and impart its twist to the
projectile in order to maintain stable flight. Inherent in the satisfac-
tory fulfillment of this primary function is the creation of centrifugal
loading of these bands. Figure 1 shows the nature of the band deformation
and some of the pertinent notation. The resulting stresses may then cause
undesirable premature failure of the band upon emergence from the gun tube,
i.e., as soon as the constraints of the tube are no longer applied. Fre-
quently, this failure is characterized by rupture and the band takes leave
of the projectile.

In many applications, this "fly-off" is not desirable and various
attempts have been made, consequently, to prevent it. All of the common
methods of accomplishing this end involve a "bonding" of the band to the
projectile. In most instances where this bonding is attempted, it is re-
stricted only to the ends of the band (as in undercut seats); in other
ceses, the bonding is effected at closer intervals, as exemplified in the
practice of using dovetails in plastic bands; in other instances, this
"bonding" is continuous as by depositing the band material by welding onto
the projectile (as in welded overlay bands). Figure 2 shows cosmon "bonding"
techniques.

7b a great extent, the "fly-off" problem is minimized or eliminated by
the use of the latter methods of bonding. However, it is expected that
this latter method may not always be feasible; considering the extensive
use of the first method of "bonding", it would therefore sees desirable to
understand the nature of the stresses induced in such bands in order to
minimize the chance of fly-off.

In the present paper, * attention is accordingly focused upon a smooth,
unrifled band which is permitted to be constrained only at its ends. The
band is assumed (a) to be thin enough to allow use of "thin wall" theory
and (b) to be long enough so that ordinary beam theory is applicable to a
segment of the band.

It is evident that, as the band becomes long with respect to its other
dimensions, the effects of the end constraints become negligibly small at
regions remote from its ends, so that the central portion of the band can
be considered as a band without end constraints, i.e., as a "hoop", wherein
the only significant stresses are the tangential stresses. On the other
hand, short bands (i.e., bands in which the end constraints are the primary
reactions to the applied centrifugal loading) ae subject primarily to
longitudinal bending stresses. 7here is also considered to exist an inter-
mediate geometry of the band in which both tangential and longitudinal
stresses are significant.

*fhe results Oresented in the current pa'W have beom culled from the followi,, owtrtn iremaIabor.atory reorts: a. "On the I'mfuec. of id Oome trant on Stresses to Rott4q said wder
Ventriat Porces", WA No. WOO/0-; b. rstc Stresse- i L aotatw l Od subjected to a
AdeY*J orled Oe ntr l rcen, VAL so. M/381. god C."Itre.." beyond the FL. Point ins,) 1 LOf NotatL~ iv LOd by a Suddenly qtolied Centriw at Porc*, b44 AosW fhi Oyltiier

* &c~ded by as ftdely I*0'li.d Interial ?reswre , VIAL to. 9W/53.
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In the following analysis, the 8ltferential equation is first presented
and is then specialized to apply to each of three specific cases as follows:

Case I: Static State - Elastic Behavior

Case II: Dynamic State (Suddenly Applied Load) - Elastic Behavior

Case III: Dynamic State (Suddenly Applied Load) - Inelastic Behavior

These three cases are distinguished, one from the other, by the nature of
the response, of the band material, to load and by the time rate of appli-
cation of this load. The effect of time will be adequately covered later
in the paper, so we consider here only the significance of the material
properties, best characterized by the representative stress-strain curve
shown in Figure 3. Figure 3a shows the general behavior of many engineer-
ing materials; it will be observed that for small loads the material behaves
elastically and linearly. Cases I and II conform to response restricted to
this region of elastic behavior of such materials. Case III, on the other
hand, is aimed at the response of a completely inelastic material such as
shown in Figure 3o. Several characteristics of the behavior of materials
stressed into the plastic state are of interest and are pertinent to the
present problem. We note in Figure 3a, for example, that the nominal stress
reaches a maximum value and that an instability ensues in that the strain
continues to increase with diminishing stress. This instability, which is
accompanied by a localized contraction of the specimen, is known as "neck-
ing" and is associated with the fact that the rate of strain hardening is
inadequate to compensate for the decreasing cross-section of the specimen.
When such stress-strain curves are plotted in terms of true stress and
natural* strain, the curves can generally be expressed in the form or kel"
for monotomically increasing o and necking or he instability point can
then be shown to be governed by the criterion dE r. Applying this cri-
terion to the suggested stress-strain law leads to the conclusion that
necking occurs when the natural strain e equals the strain hardening coef-
ficient 71, i.e., 9 = 1. Ficure 3b shows a conventional stress-strain curve
in which premature fracture has precluded the necking possibility.

FORKMATION OF DIFFERENTIAL EQUATIONS

Consider the longitudinal element of the band shown in Figure 1.***
Treating this as a beam on an elastic foundation subjected to static load-
ing p(x) directed radially outward, we may express the deflections in terms
of the following familiar differential equation:

d~y(x) = l-v2 p~x) . . .. . . . ... . . . . . . . (a)
dx 4 EI '

Yrue stress is the lod divided by the instantaneous area rather than the origin area, and
atwai strain is defined by the relatton e w t n/ o where t and t0 are the instantaneous

and initlai infinitesimal gage lengths resoectiWly.

"this form wi4th h > 0 and 0 < 77 < I has been demonstrated to a~f y to most engineering mater4als,

"Ioricuarly for the olast c stage.

**the rifing shown is so very shallowui.th res~ect to the thickness of the band. hence i neglected.
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where I' is the moment of inertia of the beam

E is Young's modulus

v is Poisson's ratio

More generally, if the external loading is a function of tim, this equation
should more appropriately be written

y(xt) 1-V2

where p(x,t) may be expressed in the forq

p(xt) = [a(x,t) + b(x,t) + c(xt] Ad

and the quantities a, b, c are respectively the centrifugal, restoring and
inertial contributions to p(x,t) and A a is the angular width of the berm
as noted in Figure 1.

We now specialize the general differential equation (Eq. 1) to conform
with the specific cases described earlier. In the next section, we shall
solve these resulting explicit differential equations for the motion of the
band and derive therefrom the general behavior of the band.

Cue I: Static State - Elastic Behavior

In this case y and p are functions only of position x; hence, the in-
ertial contribution to the external loading is absent and remaining contri-
bution a(x) and b(x) can be shown to be given by

a(x) = qD
°

2

b(x) =--- y()

Do

where q is the centrifugal loading per unit area, h is the bern thickness,
and D is the initial mean diameter of the band. It will also be obvious
that the partial derivative

Zy (x,t)

can be replaced with the complete derivative. Then Equation 1 can be shown

to reduce to the form

d4y(x= (-0 ) [D 2 Ehy ... .dx"- - E 2 2• ' -D Y
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Case II: Dynamic State (Suddenly Applied Load) - Elastic Behavior

For this case, we observe that y and p are functions of both position
x and time t, and it is necessary to include the inertial contribution in
the loading term p(xt). It can accordingly be demonstrated that

a(xt) = qD

b(x,t)O- h y(x,t)

g 2. 'at2

whence Equation I becomes

2y(x,t) t
-L O - . L Y t )A . (3)

Case III: ,ynmsio State (Suddenly Aplied Load) - Inelastic Behavior

Here we restrict our attention to a long band, i.e., a band of suffi-
olent length so that end constraints, if present, do not significantly in-
fluence the maximum deflections of the band. Consequently, we note that in
the critical region of the band, i.e., away from the ends, the loading tem
p and deflection y are functions only of time t and are independent of
position x.

We further depart from the earlier simplifying conditions of elastic
behavior and permit extensive plastic deformation of the band. In the
present case, it ts assumed that the material obeys the exponential true
stress-natural strain law a' - kc (for monotomically increasing w). It
will be recalled that such materials exhibit the so-called noking or in-
stability phenomenon at a strain e governed by the result 9 - 91.

Within the soepe of the above restrictions, it can be shown that

ay (x, t)
--0

a(x,t) =(1
.2

b(xt) = -kh [ (l y(t)]'

c(xt) = - PDh d 2y(t)
2g dt'
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where D is the instantaneous mean diameter of the band, i.e.,

D o I +

Equation 1 may then be expressed as

1-vt f 1)pDh' -AaY(t).h ( t] 1 - A

>* a . 0 . a a .(4a)

Notingt then, that q may be written - 1*2 this become

y D + 2y dt"y(t)
O' +~- E*1-- Da *) *C.(b)

(~.Do

Equations B, 3 and 4 have been summarized in Table I, along with the sp-
propriate boundary and initial conditions.

GIN1RAL ANALYSIS

We proceed now with the solution of Equations 2, 3 amd 4 for the per-
tinent boundary conditions shown tabulated in Table I.

We had (Equation 2), (recalling that I =

d'y(x) 48(l-v') 1(1-') qd - -+ Ao hx( ) - J h ) ' ' .. . " ' " 0 ( 0 0 0

' tirt4 is, not #s exat diffwreat4i quto of equilibrim n M et8 4. eisa
-a s D 4 te ter _ ,Were j to k ,4f the Cenkigik ruidie of an evlerv sectim.

a
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Solution for the case of simply supported ends leads to the expression*

y + D 2 L[ oo2Y N sin cesh ss nh (X +

where

M cooY ooshV
sin'y sinhty + roos) coshIF

end

N sin y sinh y
sin') usahY' + osny oosh')

and

V Y D.'h' B

The strains in the longitudinal and tangential dirotions at a dis-
tanoe 9 from the middle surface of the band are then given by

9yz - ~x
- Do  dxT

md

By .a(x)

and

ST " (X) ,, dZ '

Do

'It .horU b Rote4 ee sphst x oa ed stre sse cefst i. e : w.

A d 2y (x
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The maximum value of the stresses occur at the band surface at mid-
span and can be shown by appropriate substitution to be given by

L _-Tnm D_ 2 sin y sinh y a o

me l-V l Tsiy inhy + inhy -cosy h y

and .. . . (6.)o,..y
WTM&X 2h sin'y sinhly + cosoy cosh2y

To facilitate interpretation of Equation 6, it is convenient to normal-
iue 0 Laax and 0 Ta with respect to the corresponding value obtained utiliz-
ing siple wide-beam theory and "boiler" theory, respectively. We conse-
quently define the ratios SL and ST as follows:

= rLma x
SL =I .-.Leam

and

T &Tmax

Thoop

where aL... is the stress computed using conventional (wide beam) theory, i.e.

3 q2ML .=7- q
beam 4 i

and
=Do

°'Thoop =Wq"

Appropriate substitution then yields the following equation for SL and ST .

sin y sinh y
8L 72 sinzy sinhZY + GOOSZ eosh'7

If 5- Y ... ... ..(7)
+ W inz sin y i yoe1- coshy

ST ~ sinly sinh y + oaoLY cosh'7
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These quantities, plotted in Figure 4* for v = 0.3, may be used as
correction factors for determining the actual stresses in a band by multi-
plying the nppropriate normalizing stress by the factor. For example,
suppose a band such that S and ST are 0 and 1.1 respectively; then, the
tangential stress is the simply computed hoop or boiler stress multiplied
by 1.1. Obviously, the longitudinal stress is zero in this case. (This
merely means that the band is quite long, and behaves essentially like an
unconstrained hoop.)

Case II:

We had (Equation 3)

Z4--~xt -(~t 1-'[D h 2yxtjS'ylx,t) 1 - 2Fh yx,t D a
x El ' Do  2g

Using the method of generalized coordinates**we write

~i7x
Y = q , i s i n -7 -

11

where q, is the generalized coordinate and x is measured from the end of the
band.We form the potential and kinetic energies thusly:

P F.h 2 Aa 2
47F3 i D0 i-1

K.. pDohta ~j~ q1
2

89 i-l

Substitution into LaGrange's equation then yields the following differential
equation for q :

where Q, is the generalized force corresponding to the coordinate ql.

In the present case, we assume an external running load (centrifugal
loading) of intensity q* .a suddenly applied at time t = 0 and there-

5.mo s ight inaccuracy is introduced in the dashe regiom due to shear deformstiom of the be .
Po ent to thickwas ratio greater thans 5, however, Sti error is less thans 101.

' "V ' o , brtion Probles in wigineerg". D 'Vow Icetrard Co., Inc., " Ed.,

.A "se, x %as measured from tWaidsa osition.
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after maintained constant. Under these conditions, Q, can be shown to be
given by

Q1:- qD ° Aa  (cos iw - 1).
Biw

The general solution then for this case may be written

* r-P [o (i)-lJ1ospI t -1 ] i,
y(xtt) Z + -2 + ~is&10-*... (i)

where

2 - + 4 2)

Appropriate substitution into the stress-deflection equation (a) leads to
the following maximum stress formulations at x = /2, and t w/Pi;

24q42 - --- il -co iJ 1
=' + 2423 sin-If

and

= + 96qt4 0l -cos(iw)) ini

1~a O .1 ij[i + .4(g V J 2

+ 2442,, I- , -coo , ] - ,i I 9
+ ~ sin 4*" . . *. .()

Evaluation of Equation 9 and comparison with Equation 6 show that the
stresses are just twice the former stresses. This is as should have been
expected for the sudden loading of an elastic system. The curves of Fig-
ure 4 are therefore directly applicable, provided the normalisation Is
recognized to have been taken in this case with respeot to the dynamic
loading stresses in a wide beam or simple hoop.

Case III:

Finally, we had (Equation 4b)
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321] D 2 2kg [.l DOjj7 dly(t) (b

for dy(t) > 0.
dt

Letting U 2( + - 2), and rearranging, this becomes
Do

d2U 4kg r4 UT 0d t + U u W -2 01 c
* *U . . . . . . . (

dU
for 0 < t < to where to is the first time for which - = 0..

The complete solution of this non-linear equation is not readily ob-
tained by ordinary methods; however, by single integration, the velocity-
displacement relation is readily obtained and considerable insight to the
characteristic behavior of the band may be derived therefrom. We thus
obtain by the initial integration of Equation 4c (with the initial condi-
tion

dU
7 = 0 at U- 1)
dt

1 dU (U 2  .1) , ..

for 0 < t < t o

where the loading termA is defined as follows:

.- = 1pD2

4 gk

A plot of this velocity-displacement relation is shown in Figure 5
for a fixed value of 77 (i.e., a given material) and for a range of values
of the load parameter A The arrows indicate the direction of increasing
time. Only the plastic behavior of the band is presented. (The dash lines
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indicate the start of elastic vibratory behavior, but we shall not discuss
this aspect of the band motion here.*) It will be noted that for small
values of the load parameterA (i.e.,A<Acrit) the band expands but
eventually slows down to a halt at some finite value of displaoement Upx..
On th3 other hand, at higher values ofA (i.e., Acrit), the band'
becomes unstable and extends indefinitely until fracture occurs. This
instability is attributableo the necking phenomenon discussed earlier.
We designate the value ofAliax attained at A orit as U crit. In Figure 6,
we plot the displacement U max against the load parameter A for d
values of n. The end points of these curves shown by the dash line represent
the critical conditions A crit and U crit. In Figure 7, we have plotted
this critical load parameter for different materials as defined by the stress-
strain relation o = g. We recognize in Figure 7 that for loads or speeds
less thanAcrit the band is retained; for higher loads or speeds, failure
can be anticipated.

*for doiLk, se VA& low$e go. V/p VMS ' reoe h SAO fie W Point to )s A if
l.et*4 hid Sed by 6 AOlAnly J0044 Ostrifsol ae., b) A Lon ei OY1i4"r Loom
by a #anlysI A44 Iederiw IAeuueW.
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TH EFECT OF PARTICLE SUSPENSIONS ON THE FLOW OF'A GAS

Hugh N. Brovn*

A suspension of smll particles in a gas may produce important changes
in the flow of that gas by virtue of the drag forces exerted on the particles
and of the exchange of heat between the particles and the gas. Of particular
interest is the propagation of a shock wave in such a medium.

For simpligity, let us assume that the particles are spherical and Of
uniform size. The drag forces and heat transfer properties can then presumably
be calculated from experimental data on single spheres. (Refs. 1 and 2) This
assumption will be most questionable for large dust concentrations and/or high
Mach numbers. If the dust concentration is not too high, the effect of particle
collisions may be ignored and the volume occupied by the particles neglected.
In this case, the equations for plane flow may be written as

nt + unX + nu - 0 (1)

uD,+uu -= o (2)u +Ux -a

Pt + YPx + PVX 0, (-)
p(vt + v) + px + nD - 0 (4)

m mcp(Tt + uT) + K(T - ) . 0 (5)

(st + V x) - nK(T - 0) - 0 (6)

The symbols used above are

n - number of particles per unit volume,

u - velocity of dust particles,

*D - drag force on a single particle,

m - mass of a single particled,

p - gas density,

v - gas velocity,

p - gas pressure,

CP- specific heat of a particle,

T - dust particle temperature,

K - effective heat transfer coefficient,

o - gas temperature,

S - gas entropy

" Balltio Researh Laboratories
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Subscripts x and t denote differentiation with respect to x and t. The gas
will, in the following, be assumed to be an ideal polytropic gas whose equation
of state is

S

p - A e'V PY -RIG

where cv is its specific heat at constant volume, R is gas constant, and y is
the ratY68of specific heats.

Equations (1) and (3) are, of course, simply mass conservation equations for
the dust and gas respectively. (2) equates the rate of change of momentum of a
particle along its streamline to the drag force D acting on it. Similarly, (4)
relates the rate of change of gas momentum along a gas streamline to the pressure
gradient force and to the reaction of the dust on the gas caused by the drag.
Equation (5) states that the rate of loss of heat by a particle along its stream-
line is proportional to the difference between the mean internal particle tempera-
ture and the surrounding gas temperature. The last relation, (6), simply equates
the heat given up by the particles in a unit volume to that gained by the gas in
the same volume.

These equations can be transformed into the characteristic form (Ref. 3).
Let a be a characteristic curve parameter. Then the characteristic equations C
and compatibility equations r are

C+ r ( (V + C)t 0 (8)

+ PC vo a + + n UDe -( -l) (T -Q) t - , (9)

a- : X0 - (v tc a0,(0
:" PC ," [ c + K(y - ) (T - ) .c o (11)

C Cg : x r- vt a-o0 (12)

g ST -(T ) to  0, (13)

X0 - ut a .0 (14)
u - t o, (15)

rKT+ (T -) t - o(16)

n a nux t o =0 (17)
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Here, c is the velocity of sound defined by c2 - ( 8) cont.

Note that, unlike the others, equation 0) cannot be reduced to uni-
directional derivatives. This is a consequence of the two-fold nature of the
particle path xa - uto W 0, i.e., the parabolic nature of this path.

Let us apply the preceding results to a specific flow problem. Consider
the case of a plane, step function shock in free air impinging upon a semi-
infinite mass of stationary air in which dust particles are uniformly distributed.
In the mixture, the shock-front jump conditions for the air variables will be
the same as in pure air. The dust concentration n, velocity u, and temperature
T will be taken to be continuous through the front, since drag forces and heat
transfer rates remain finite through the front. The conditions to be imposed
at a shock front in the mixture are, therefore, for initially stationary air,

.1 + 2-y U2 (18)

o

V 2 _ aio . o "_ (U ) ,(19)
0 0

PO 1
-- 0 (20)P1  U '

u =u - 0 (21)

nl n0  1 (22)

T1 =o , (23)

where subscripts o and I. refer to auanities ahead of and just behind the shock
front respectively, andrefers to the shock-front Velocity.

Figure 1 gives the flow process in the x,t plane. For t 4 0, the region
to the left of the origin Q contains pure air, while that to the right contains
an air-dust mixture at the same temperature, pressure, and gas density as the
pure air. The path of the incident shock front is along the shock-line. For
t > 0, the air-mixture boundary, originally at x - 0, begins to move along the
dust streamline C through .Q while the shock velocity begins to change steadily
due to the influence of the dust.

Consider a point A on the shock line as shown. The unknowns here may be
approximated by use of the jump conditions and the relation (9) applied along
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the forward sound path C+ drawn to A from a point B on the x-axis in the

dust-free air. Equation (9) shows that, under the assumed conditions, the

shock strength initially decreases from Q to A. In fact,()d may be cal-

culated from (8) and (9) and the shock conditions. It must be remembered,
in integrating (9), that n = 0 to the left of the air-mixture boundary. Hence,
from (8) and (9),

POQcQ(vA - vB) + (PA - PB)  nQ DQc 4 -KQ(7-l)(TQ-Qj v t. (2)

Here, PQ, CQ, VQ, etc. are the values at the origin appropriate to the initial

shock velocity UQ.

Now, since the incident shock is a step function, vB = VQ, etc. Therefore,

the differences above may also be expressed in terms of the rate of change of U
along the transmitted-shock line from Q to A!

_Idvl )"/d)U e

vA -vB - vA - vQ- t, approximately, (25)

=dp)Q dU
PA ( - PA 8t P tQpl (26)

dv1  dp 1
where T- and are evaluated from (18) and (19). Substituting these expres-

sions into (24),we find that

Ud nQDCQ - KQ(7 - 1)(TQ - QQ)J (27)

Now since T is continuous through the shock front, according to (23),
T 0 TQ < and so ( is negative.T TQ< Q an W )o Q

For a typical case, let us assume a dust particle radius of a - 10 4 cm,
a dust density (nm) equal to that of the undisturbed air, p , and incident

shock velocity of l.4 c (corresponding to a 1.12 atmosphere overpressure).
Taking suitable values ?or air viscosity, specific heat, dust thermal conducti-
vity, etc., it is found that

_1 (dU )Q -O.O4/ sec.
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Thus, the shock relaxation time is of the order of 70 psec.

An idea of the early behavior of the flow may be obtained from a first-
order series approximation. Expanding the shock velocity as a function of
time in a series

U = UQ + U U vv-ti

and the dependent variables in series such as

v(x,t) = t1 x'

"Lv

The equations of flow, (1) - (6), may be solved correctly to first power
terms in x and t. It is necessary to employ different series in each of the
flow regions I, II, and III indicated in Figure 1, imposing the initial and
boundary conditions in each domain. The flow in domain IV is known.

The value of U1 so obtained is the same as ( ) determined above from

the characteristic equations. For a given small time bt after the shock enters
the mixture, the first-order solutions give the results shown in Figure 2. The
numerical values indicated are for the same example mentioned previously; i.e.,

a = 10 "4 cm, UQ = 1.4 co , nom = po. The ordinates are distorted for the sake of
clarity.

It is seen from these curves that, at the origin, the pressure and density
increase to a value greater than that in the incident shock even though the shock
front has decayed in strength. Clearly, a compression wave is set up which will
travel backward into the shocked pure air, eventually developing into a second
finite amplitude reflected shock at a point near the backward sound path C- through
Q. The flow up to this point can be calculated once the solutions on the air-
mixture boundary C are known, since all the backward characteristics extending
into the pure air fdion are straight. The point of origin of the reflected
shock may be estimated by finding the limiting point of intersection of an arbi-
trary C- with the C- line through Q using the first order approximation already
obtained. That is, for a given time bt, the C- line originating on the air-
mixture boundary at E is extended to its intersection with C-Q as shown in Fig. 1.

The limiting position of this intersection is then determined when bt approaches
zero. Provided that higher order terms do not change the result too radically,
it appears that the reflected shock forms far enough from the origin that it can
be ignored while starting a numerical integration of the problem. For example,
in the special case already considered, the estimated point of origin of the
second shock is at t = 40 psec and x a 0.7 cm, whereas the time and space
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increments used in a numberical solution should be less than 2 psec and
.035 cm respectively.

Hence, a numerical solution to this problem might proceed as indicated
in Figure 3, which illustrates a finite difference scheme which could be used
in the mixture region. Assuming that all quantities are known as a function
of x at a certain time t, the solution may be advanced to t + 8t by chcosing
a point A on t + Bt and extending the four characteristic paths, C+, C , Cp,
and C- back to intersect the line t = constant at the points B, D, E,Fg  P
These four imknown values of x plus the six unknown dependent variables at A
may be approximated by solving the ten finite difference equations based on
equations (8) through (17). Of course, modifications must be made whenever
one of the characteristics intersects the air-mixture boundary or the shock
line. If, for instance, point A is on the shock line, only equations (8) and
(9) need be used in conjunction with the shock-front jump conditions.

An alternative scheme would be to replace the independent variable x by
some quantity Z, say, which could be the mass of the gas or of the dust con-
tained between a fixed streamline and the one through an arbitrary point (x,t).
Then Z is constant along a streamline so that, in the Z . t plane, the particu-
lar streamlines in question are straight, vertical lines. Thus, the integration
net could be simplified without greatly complicating the remaining characteris-
tics.

For the case of a plane, step shock incident upon the mixture, it is con-
ceivable that an asymptotic condition might be approached wherein a wave of
constant profile propagates into the mixture at a constant velocity. (Ref. 4
A consideration of the requirements of conservation of mass, momentum, and energy
across such a wave shows that, for sufficiently large asymptotic pressure, a
wave consisting of an air shock followed by a continuous pressure rise to the
final total pressure would be possible. The continuous part of the wave would
correspond to the interval required for the dust to come to thermal and dynamic
equilibrium with the gas. The strength of the "air shock" would be such that
its velocity would be equal to the velocity of the wave as a whole as determined
by the total pressure rise, thereby maintaining a constant profile. Whether the
equatiorsof motion discussed above actually lead to this situation is not known.

For total pressure rises less than a certain amount, the velocity of a
constant profile wave would have to be less than c , the ambient sound speed.
Hence, no preceding air shock would be possible, ag in the foregoing case, and
the wave cannot maintain its shape; the wave would probably be a continuous
pressure rise whose "thickness" increases with time.

Under the conditions of the numerical example given previously, the critical
overpressure in the mixture is 1.51 atmospheres which corresponds to an incident,
pure air shock of 1.26 atmospheres. The assumed pure air shock was only 1.12
atmospheres, which means that the asymptotic wave in the mixture would be con-
tinuous; the discontinuous "air shock" front would decay completely to zero
strength.
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From the results presented in this report one may, in general, de-
termine the elastic stresses, strains and displacements in arbitrary, but
rotationally symmetric, thin shells. The linear theory of thin shells is
used in this development. This theory is sufficiently described in the
appendices to indicate how all the results are obtained. As an illustrative
example, the surface stress distribution is presented fbr an idealised
bell-shaped chamber section (106MM T137 of recoilless rifles.

Membrane stresses, given by a solution which neglects the shear-
ing stresses and bending moments, are presented for comparison pur-
poses.
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I. INTRODUCTION

A considerable amount of effort has been made in recent years
towards lighter ordnance materiel. In many cases, this has resulted
in making component parts, such as gun tubes and chamber sections,
thinner.

It is well known that the maximum stresses in tubes or chamber
,sections will, in general, increase as the thickness with respect to a
reference radius decreases. Thus, it is useful to know the stress dis-
tribution, a priori, in these component parts so that under- as well as
over-designing may be avoided. In this report mathematical results
are given which may be used to determine such stress distributions in
thin, elastic, isotropic shells (1) which are axisymmetrically loaded, are
,of known axisymmetrical shape, and have small deformations.

While much work has been done on the elastic theory of shells; (2)
the greatest progress in the development of its application has been
accomplished only in the papt few yeahs. Most previous applications( 3 )
have been of the membrane 4) type, where bending and shearing stresses
have been neglected. This latter analysis, in general, in theoretically
valid only for paper-thin shells of revolution (i.e., paper-thin in com-
parison to the least radius of curvature). However in many instances
this analysis does give sufficiently accurate results for thin shells which
are not paper-thin. In the case of chamber sections of recoilless rifles
the membrane solution is questionable, for here the curvature changes
sharply and the chamber wall is not paper-thin.

In this report a more refined thin-shell theory is applied to deter-
mine the stress distribution occurring in chamber sections of recoilless
rifles. This thin-shell theory 1 4 ) is presented in the appendices. A
solution of the equations derived from this theory is presented in Appen-
dix C and Uaalid fornanv tvneaof thin shells. 'These appendices
are given in WAL Report No. 731/407.)

W1)1 shell is said to be tht if its t/tchessj is suall in conkson to its least
rdi of cwvrtore.

(R)s met three-tee ionaI analysis of thin she 118. ge eralay sosehrq, is notfract/cal, becawo a MiLn-shell araysis is ussal..y am .es*idxa Olduuall
fitws anwers which are sufficiently accwate for their intes" 0,wes.

(3)Uhe ther or not a she It14s a sembrane de,*erds, pnot only on the stress-free fors of the
shell, but also on the 4$tue of the toa

* ( /)'1he eftreidices list the condtions, as forlutated by 8. eissaer, of th shell theory.
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The solutions(") for sections of conical, cylindrical, and toroidal
(donut shape) shells are extracted from the appendix and are presented
more explicitly in the body of this report. These solutions may be used
for determining the stresses in conical, cylindrical and bell-shaped
chamber sections. The case of the bell-shaped chamber section is con-
sidered here in some detail (the 106MM T137 chamber section was chosen
as an example).

One of the great values of thin shell theory (linear) is that, under
certain restrictions, component sections, such as cones, tori, etc.,
can be considered separately for analysis purposes and then pieced to-
gether. The results of the analysis for each component section can be
written down as the sum of a) terms which include the loading conditions
on the surface of the shell (called the particular solution) and b) terms
which are used to satisfy the end or junction conditions (called the homo-
geneous solution).

II. SUMMARY OF FORMULAE, CONVENTIONS AND NOTATIONS

In this section, a summary is made of results, gathered in the Ap-
pendix, that are necessary for calculating stresses, strains and displace-
ments in shells of various shapes. In particular, these results may be
applied to determine the stress distribution occurring in various types of
chamber sections. These results are based on a linear theory of shells,
which is sufficiently described in the appendices of Section II. The infor-
mation that is of importance in applying the contents is the geometry of
the shell, loading and end conditions. This application is illustrated in
Section III for bell-shaped chamber sections by means of a numerical
example in Section IV.

A. Geometry:

The middle surface of a shell, illustrated in Figure 1, can be
represented by

r = r(f), z = z),

so that e together with the angle 9 in the (x, y) plane determine a point on
the middle surface. It is convenient to define f in terms of the arc length
of a meridianal curve of the surface in the (r, z) plane, as follows:

or 2

and

r a cos, z = a sinp,

(1 'The extracted solutions are valid for other types of shells provided that, over the
considered region of the shall, (a) there. exists no tangent pierpendicular to the
center line an (b) the thickness is constant. fhe cases invo ng a tanrnt *erpen-
diCU14r to the center liae and/or a non-constant thichnesq are discussed r (efly in
the appendix.
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FIGURE 1
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where tan , is the slope of the tangent line to the meridian as illustrated
in Figure I and primes designate differentiation with respect to i . It is
assumed that i is such that a is of the order of magnitude of a reference
dimension of the shell, such as a reference radius of curvature of the
middle surface of the shell. The coordinate C with axis directed along
the inward normal to the middle surface is used to determine points
relative to the middle surface.

B. Notations and Conventions for the Strains, Stresses and
Displacements:

The strains, stresses and displacements are defined more
explicitly in Appendix A; but for the purposes of determining the same,
only the following are needed:

(I) Strains

E"e6 = ao -vo = E x circumferential strain
E =a - rl = E x meridianal strain

(2) Stresses

a.= h + h3M = circumferential stress

12
- h + -M3C = meridianal stress

= (3Q)/(Zh) = shearing stress

where

a) Stress Resultants (taken in accordance with Figure 2)

N0 = EjjrH)' + raP] a 2  (rI) 2 + ( )2

N I Fr )+-'(

a Ir ~r 2J)I -! (rH) + r (rV

rV = -fraPVd

b) Moments (taken in accordance with Figure 2)

Me D r(20+=-- (3 + ii*j3
D I r e
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FIGURE 2
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(3) Displacements

u -CL (Ne - v N - radial (horizontal) displacement

W =fc.'(Ne - N,) - r :g]d= vertical displacement.

(4) Constants

E = Young's modulus

v = Poisson's ratio

C = Eh

D = Eh 3 /m 2

m 2 = 12(1- V2 )

h = thickness

The quantities P and P. denote the components of load
intensity in the r and z directions, respectively; while H and ,6 are the
horizontal stress resultant and the angle enclosed by the tangents to the
deformed and undeformed meridian of the middle surface at one and the
same material point, respectively.

C. Solution of the Basic Differential Equation:

The basic differential equation of the linear theory of thin
elastic shells and a general solution, which is valid for a large class of
thin shells, are presented in Appendix B and C, respectively. For the
problems at hand (i. e., chamber sections), solutions are extracted from
this general solution and are presented in this section for a class of shells
that have the following properties over the considered region of

1) the thickness, h, remains constant

2) there exists no tangent perpendicular to the axis of
rotation
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. An approximate solution of the differentiar equations for 'the class

of shells having the above properties is

r ii~$ 4 ePM [Ar coo ALI- B0 sin ~I

+ exp (- 4)[Al coo 4j+ BIMU

and

M 1/2 rr~i ( ) ( 1/4 e(P1) [B. cos,4 + Aosin4At

+ exp (-AP) B1I coosp4-Al sin AIs]}

+ -;' rV

where A,. Bo, Al and B I are constants that are to be determined from

the surface loading, junction and/or end conditions. Here

exp() = eM!

exp (-I=•

* ~and -S

where io is an arbitrarily chosen point that is usually chosen in the
considered region of I.

D. Membrane Solution:

The membrane solution(1) as mentioned in the introduction,
is obtained by neglecting the bending and shearing effect. This implies
that Me s Me a Q = 0; the equivalent would be the following

rH 'n rV = O

The stresses, that result from the above and the relations
given in Section II B, would have the simplified form

&= No/h x [(H + rap

and

*a = Ne /h = 'g rV.

• (W~tlsere are a ,wgber of so-called sesbraw theoria of which the m6e &b" isposs4bly the s4tplest.
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In general, junction and end effects contribute little, if anything,

to the stresses at points whose distances are greateri than (Roh 1 2

from the particidar junction or end, that is being considered. (R. is
a representative dimension of the shell). Hence, in general, the above
so-called membrane solution is usually valid for points whose distance
is greater than (R o h)1/ 2 from junctions and ends.

III. Application of Results to Bell-Shaped Chamber Sections:

A. Geometry

A typical bell-shaped chamber section (see Figure 3) of
constant thickness, h, is composed of two truncated cones and segments
of two toroidal({ ) shells. These truncated cones (2) and segments of
toroidal shells are assumed to be joined so as that there exists a contin-
uously turning tangent across each of the junctions a = si .

The middle surface of the shell can be represented as follows:
dz I

r P I f + " ,dr P1
Z- =7 + Tl , Y < -Cz
(Note( 2 ): We have a cylindrical section, when Pl a 0)

rf= rZ - S coso

S=z2 + S sin ' .

fr= r 3 + R sine
z=z- R coot f as 3  R o 7 3 <z <7 4

dz 1

r P4f4+ r4 dr p4

(Note: We have a cylindr~ical section when P4 = 0)

The terms with a subscript i will imply that they are to be
evaluated in the region i i <s<i t '.

fe case of a toroidal shell havng b <.. hera b is the radius of $A# CrUS:=
sectional circle and a is the distance from the cener of the circle go the cenw
line, was staded by Clqrk [9l. fhe case kftn-- 3 a kms solved indepndently by
author and Iaghde []. Numbers in bracwets refer to the Bibliograpihy.

(2)fThe analysis iresented here assues that tie cones are not sha lo.
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MIDDLE SURFACE OF A TYPICAL
BELL- SHAPED CHAMBER SECTION

24 -------------

FIGURE 3 AM -1?75- 0

11-4-55
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B. Loading Conditions

This chamber is assumed to be subjected to internal pressure,
P, and a supporfing tension at the end •a ulrf. In addition it is assumed
that

Me = Q a 0 at z Ir.

and

P= I 0, atz = I1.

As mentioned in the introduction, one of the great values of
thin-shell theory (linear), is that under certain restrictions component
sections, such as cones, tori, etc., can be considered separately for
analysis purposes and then pieced together. These certain restrictions
are the so-called junction conditions, which are obtainable from the con-
ditions of equilibrium and continuity (compatibility) that must exist across
the junctions of the component sections. These latter conditions may, in
general, be reduced to the following four conditions at the junctions, for a
continuously turning tangent (as is the case here):

a) equality of radial displacements for the middle surface.

b) a continuous tangent is maintained across the Junction
(i. e. A is continuous).

c) equality of shear resultants (i. e. 0)

and

d) equality of the meridianal moments (i. e. Me).

It can be shown that the preceding four conditions are equivalent
to the following conditions (1) imposed on A and 0 at the junctions:

+ I' = i + I

ii i+ I, /'/+i i+ 1/ai+ l,for a 1+ 1, in 1.2,3.

(J)rdse condition ssemg Skit a i MI e attW on on@ Side of t0 jIMct4@ 00i"
and Wstiw an the other SUe.
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* C. Solution (Method of Specifying the Constants)

Now, the strains, stresses and displacements, in view of Sec-
tions IIIA and IIIB are dependent on the quantities /. and '. These. quan-
tities are defined in Section II C, where for convenience the constants
Ao, Be, A I and B I are now replaced by the constants Aoi, Boi, AI1 , B li
(i a 1, 2, 3,4), respectively. (The subscript i has the same implication
as mentioned previously, see IliA). Since all other terms are defined,
the stresses, strains and displacements are determined once the above
sixteen constants are specified.

From the conditions given in Section IIIB, it is easily seen
that there are four equations for the end conditions and twelve equations
for the junction conditions. This is in agreement with the fact that we
have sixteen constants to specify; that is, we have a system of sixteen
equations to solve.. These equations can be solved by the classical method
of iteration [1), and in many instances by Crout's method [1], if the
system of equations can be arranged to get a dominant diagonal. If the
diagonal is not dominant, then a scheme devised by 0. Bowie [z] may beused to-get the required dominance. Further numerical techniques may
be found in a text by Hildebrand Dor in a Bureau of Standards Reference
List 03.

The solutions of this system of equations are then subsitittted
into the relations for A and , which in turn are substituted into the re-
lations for the stresses, strains and displacements given in IIB.

IV. Stress Distribution in the 106MM T137 (Bell-Shaped) Chamber
Section

As an illustrative numerical example, the 106MM T137 chamber
section was idealized to fall into the class of so-called bell-shaped
chamber sections. (See Figure 4). The length of the chamber is 24
inches, where s = 0 is assumed to be at the muzzle end of the chamber.
In view of Section III; the pertinent values (1) that are needed for the
analysis are as follows:

For the region i = 1, we have

p, a0. 103187, (71' ,) = (2.96330, 11.4), TZ = 17.32, al a Z.97903

and

1.'fJz de-- [--c1
* (Wince the rela of iteeut is "ear the torot"I ea toP, the ft.wiye to retr kt

to X > 8 t_ J.9.
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* For the region i = 2

(r 2 , z.) = (6.26532, 17.0262) S = ?= 2.830270, r 3 = 18.85

The values of l for this region were obtained by numerical inte-
gration.

For the region i = 3

(r 3 , z3 ) = (1.66340, 20. 9043) R a 3z 3.187840 ra 20.82

The values ofi for this region were obtained by numerical
integration.

For the region i a 4, we have

P4 = 0.0274869. (T4 , r 4 ) = (4. 85. 20. 82). T5  24 4 4. 8$514

and

From the normal surface loading, P. we obtain

raPv  Pr/a rV,=(- r2/%+ Cl
IT 1 rP. for i= 1

rAP s = rz0P = rsP, for i= 2, 3

1 4 rP, for i= 4.

Since the chamber is supported at Z'= 95' the condition at zm 0
would essentially be that of a free end. Hence from the condition that
rV * Oat s 0, we find

CIO - r I = - z. 62.

-Ir= 2. 289

The needed physical constants are as folows:

E = 30x 106

= 0. 285

h = 0.43228 z average thickness.



The preceding relations and values are to be substituted into
the expressions for /, 0 and their derivatives, which in turn are to be
substituted into the end and junction conditions. This latter substitution,
as previously mentioned will result in a system of sixteen equations with
sixteen constants A0 i, B 0 i, Ali, Bli, i = 1, 2, 3.4. This system of
equations was solved by a reordering of the equations to get a partially
dominant diagonal and then applying Crout's method. The following
results were obtained:

A0 1 = -2.06 x 10.9  Al = 2.06 x 10- 9

B 0 1 = 6.86 x 10-10 All a 4.81 x l0 9

A0 2 z -1.12 x 10- 7  A 1.52 x 10-7

B 0 2 a 2.01 x 10-7 B 1 2 a 2.94 x 10"7

A 0 3 = -1.69 x 10-8 A 1 3 a 9.15 x 10-6

B03 = -2.75 x 10-9 B13 a-4.03 x 10-6

A 0 4 R -2.46 x 10- 10  A1 4 a 3.66 x 10- 7

304 a -2.83 x 10' 9 .  114 a 6.52 x 10- 7

These values were then used to evaluate , /30 ' and 00
which were in turn used to evaluate the resultant stresses and moments,
lIB. These latter values were then used to evaluate the surface stresses"~l

as presented in Figures 5, 6.

The membrane stresses (I1D) for the chosen example have
been evaluated and are presented in Figure 7.

WJ'treun obta.id from .gievt Ifirif reIlts for a JOU a r to air#@qtstitativela at $A 0otnts aAre strais #owe wre attmchd. e e Desvsws
[is) listed ti the bibliatra0hy.



* 243

CIRCUMFERENTIAL STRESS DISTRIBUTION AT THE SURFACES OF A
RECOILLESS RIFLE CHAMBER SECTION (106MM T137)

14 NOTE: f REPRESENTS DISTANCE

FROM BREECH END OF C4AMKR SECTION

13 W#-j CICUMFIERENTIAL STRESS

OUTER SURFACE P- PRESSURE
STRESS

INNER SURFACE
N STRESSg

%I" II I

W.6

* P 10 ~
%I

9 1MIDDLE SURFACE OF
CHAMBER SECTION

6

I 2 3 4 5 6 7 0. 9 10 11 12
R (INCHES)

AM-rr?4-6

FIGURE 5 11-4-N



244h

MIRIDIANAL STRESS DISTRIBUTION AT THE SURFACES OF
A RECOILLESS RIFLE CHAMBER SECTION (06 MMT 137)

NOTE: HERE 2 REPRESENTS DISTANCE
FROM BREECH END Of' HAMBER SECTION.

MERIDIANAL STRESS
P*PRESSURE

9

7 OUTER SURFACE
7 STRESS

4r6

I MIDDLE SURFACE OF
4 CHAMBER SECTION

a %.Woo
I-*

II
0

I P2 3 4 5 6 7 8 9 10 11.12
2 (INCHES) AWM0.

FIGURE 6
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* LINEAR P)OGRUOG AND HIOH SPEN

COEPUTER APPLICATIOM

1. Introduction

In writing of linear programming and high speed comuter applications,

I have several excellent works from which I can draw material - the prelimi-

nary material relating to the increasing practical importance of linear

programming, the mathematical background of methods of solution, and computa-

tional aspects of these mathematical ideas. I shall refer mainly to three

such sources here, but I must note that I limit my references to these

source. only with the understanding that additional references are available

in the bibliographies they print. The sources are:

The activity analysis volume edited by T. C. Koopmans [1],

The qmposium proceedings edited by H. A. Antosievics [2]*,

The expository book by A. Charnes, W. W. Cooper, and

A. Henderson [3].

I shall set myself the task of describing in a general my the

generation of problems of linear programmingl then I shall proceed to des-

cribe these problems in their abstract mathematical and econometric settingsj

*It might be remarked that one of the papers most interesting for the

present purposes in [2] is that of A. J. Hoffman, p. 397-424j, and that maw

*of his bibliographic references are numbered one lover than thoy should be,

so that his references to his [34], (3$], and [36] (as they are numbered in

the bibliography) frequently appear as references (33], (34], and [35], res-,

poctively in the text.
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finally, I shall report some numerical attacks on such problems using large

machines, indicate some victories and admit acme defeats in these computa-

tions. In the course of the exposition, I shall allow myself to wander a

little afield, particularly with regard to computations requirirg integral

solutions, and I shall reject other tempting excursions into the interestitV

work involving efficient sets with respect to several functions to be

optimisedl my guide in each case is a combination of computational feasibility

(or convenience) and economic application.

In particular, I shall limit myslf to a single numerical utility function,

rather than man such functions (or a vector function) because of the dcinat-

ing iuportance of these problems in the present applications which have been

reduced to computation. Economically it is true in times of stability that

the only item in short supply is money and that the valu, of every other ite

can be stated completely in terms of money. Hence the money value is a sound

utility function under these (idealized) conditions. In other times other

goods are in short supply (thus requiring ration coupons or other items not

completely exchangeable for money in order to provide a complete abstract

set of values - hence a vector value rather than a scalar value), but even

in these tines competitive decisions must be made, and these decisions require

ordering of various possible courses of action so that a most desirable one

can be chosen. Hence, even in the og8s ofvsctor utilities each decision may

have to be reduced to one based on a (possibly temporary) scalar utility.

2. Generation of linear programmirg problems

In describing the generation of linear progrmming problems, I shall

look at the matter from the point of view of an administrator - not a
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mathematician. The words I use will be those of an administrator, and we

shall have to provide a slight translation in order to get them into their

mathematical equivalents -- in which the same words unfortunately have dif-

ferent meanings.

The administrator is faced with a problem in which he must cause

accomplishment as highly remunerative as possible to his fim.

If he is a true administrator as opposed to a directly productive aember

of societVj his tools for accomplishing this are a few departments of his

fizu, each functioning with some degree of autoncm. His technique for using

these tools is to relay to each a set of general assignments (which it

develops into explicit assignments and carries out). In this assignment,

since the administrator is unable to monitor the whole operation of each

department (otherwise there would be only one department with the administrator

as head), he mast suggest general objectives and a mans whereby each depart-

ment can estimate the value of arr detailed accomplishment compatible with

these general objectives.

In order to do this, the administrator sets some minimal goals of

suitable results for each department. Any accomplishment not meeting these

minimal standards is to be rejected either because it is not of enough

intrinsic value in itself to justify the operation of the department or

because it may leave undone sme task essential to the integrated accomplish-

ment of the firm and not explicitly assigned to ary other department. hese

minimal standards are known as suitability restrictions, at least to Xilitaq

administrators.
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Similarly, the administrator must allocate the resources of the firm.

He makes assignments to his various departments in terms of money, shop

facilities, labor force, and other means available to the firm. These assign-

ments carry with them implicit restrictions that the courses of action taken

by the departments will in no case generate requirements exceeding the means

assigned to these departments. These restrictions are known as feasibility

restrictions to military administrators.

Now, if the administrator were omniscient and prescient he could carry

out his own calculations concerning the best course of action by each depart-

ment. However, there is a considerable amount of uncertainty involved in the

size of a priori planning factors and in the effect of various actions. Since

I am discusasir linear programming and not organization theory here, I shall

not discuss the sources of these difficulties, but rather jump directly to

the abstraction.

The department head can, then, expect to receive from his superior a

rule of utility - what various accomplishments mean to the firm. He has

himself a set of rules of tactics - what various activities he can set up

in his department will ultimately mean in tenms of accomplished output. He

has two types of restrictions -- suitability restrictions which have been

arbitrarily imposed by his superior to guarantee proper accomplishment of

the whole firm, and feasibility restrictions which have been similarly

imposed to prevent the firm from taking action which would generate require-

ments exceeding the means available. To a considerable extent, each of us

has such assignments imposed on him explicitly and implicitly, and each of

us must plan to maximize the utility of his actions subject to the
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prescribed restrictions. In the case of linear programming, the assignments

and the rules are stated explicitly, id they are all assumed to be linear.

Thus, each department may have several activities which it can conceivably

carry out at various levels. It is assumed that the levels can be stated

explicitly and that they are denoted by non-negative activity levels xa, where

the index a ranges over the set of allowable activitiess a - l(1)m. (The

notation immediately above indicates that a may take on several values, the

lowest being 1, the highest beirg S_, and successive values differing by the

increment 1 found in the parentheses.)

It is Awther asmamd that there is a set of p ertinent effects mentioned

in the suitabilit. restrictions, the feasibility restrictions, and the

utility fuation. These effects will be numbered by a greek letter, say

at at - 1(1)p. The planng rule which the departent head (or his superior)

us is based on Planni factors pet aJ the level of each effect expected to

follow from azW schedule of activity is denoted by yK, and is given by the

formula

(1)Ytc "paxa"

It is essential in the generation of linear programming problems that the

effects be at least approximated by such a linear homogeneous formula; how-

ever, devious techniques are allowed in the generation of this formula, and

some will be mentioned later.

The feasibility conditions Imposed by the administrator may then be

written as

(2) y A b ,
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where f is the set of effects which constitute expenditure of the means

assigned to the department and where the quantities b,( , O e P .represent

the assignments of these means to the department.

The suitability conditions imposed by the administrator mq similarly be

written as

(3) y c ,.

where a is the set of effects in the list of minimal suitable accomplish-

ments required.

Finally, the utlit is given by a formula

(4) u M 1 d% .

Here it is assumed that the summation takes place over the whole range

cc = 1(1) pi any inconsequential effects may be omitted more easily by setting

the corresponding coefficients equal to zro than by modifying the formula.

It is also -sonvenient., for mathematical reasons, to combine the sets

of inequalities (2) and (3) into a single set. I do not want to spend time

in details here, but I simply note that all the insqualities may be made to

go in the sne direction by multiplying those in (3) by -1, and that by

suitable expansion of the range of aL or by including meaningless inequalities

(with zero coefficients) which will disappear later we can replace Pa a by

qa a where for some vanes cc, qat a - Pca' and for other os, qoa a -Pa"

Following all this, we can combine formulas (2) and (3), throw in formula (1),

and add formula (4) with the folloing results:
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the feasibility and the suitability restrictions

are represented by the formula

(S)I qc~a xa 4 ft'ac

and the utility funtion is represented by the formula

(6) u g xa

'As was stated initially, the activIty levels x. are restricted to be non-

negative:

(7) x8 10i.

he problem of maximiuing a form of the type (6) subject to linear

Inequalities of type (5) and of typ (7) is the standard problem of linear

progring.

I note here quickly that several other problem can be reduced to this

for. If a=* restrictions are of the form of equlitles rather than inequali-

ties as indicated in (5), then each equality mey be replaced by two competirg

inequalities which have the effect of the equality restriction. If some

variables are not restricted to be non-negative, they mq be replaced by the

difference of two non-negative variables. Simlarly, by addirg non-negative

residue variables, it is possible to change the whole set of inequality

restrictions (5) to equality restrictions. 7hese are matters of technique

which wil not enter seriously Into the discussion here but which my have

considerable effects on actual oaqutations which are carried out. The
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simplex method, which figures prominently in computation is usually based on

the equality formulation, using non-negative residue variables rather than

the inequality formulation stated explicitly above.

3. Geometric aspects of the linear programming problem

In a coordinate space of m dimensions, the inequalities (5) and (7) describe

a convex polyhedral set, or they have no solution at all. We call a convex

polyhedral set a convex polytope. The form defined by (6), no matter what

the nature of the coefficients g, is maximized in this set at one of its

vertices, or it may have no maximum at all. If there are solutions to the

restricting inequalities but no maximum to u, then the function u grows without

bound in the (infinite) region described by the inequalities. Such conditions

are not consistent with properly set eca.omic problems; despite the complaints

of various rabble rousers, almost no one - not even mathematicians - has

access to infinite wealth.

So we may admit that the utility function u in any interesting problem

actually attains a maximum in the polytope described by the inequalities and

that this maimum is attained at a vertex. A vertex of the polytope is a

point with the property that no line segment containing it as an interior

point lies in the polytope.

Our problem is to find the right vertex.

Actually, the recognition of a vertex is not easy computationally, and

finding one in even harder. 0. B. Dantaig has pointed out that one can

identify many points as not being vertices by observing that no vertex has

more than p non-zero coordinates. This follows immediately from an observa-

tion that only those inequalities from (5) and (7) wILch restrict as
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* .equalities at the point in question can enter into the determination as to

whether a point satisfying all inequalities is or is not a vertex. If fewer

than m of these restrictions are satisfied as equalities (remembering that

all inequalities are satisfied at any point of the polytope), then an infinite

number of solutions exist and contain a line segment according to standard

algebraic theoryl then the point considered cannot be a vertex. Since only

of these equalities can be from the set (5), and since at least m must be

satisfied at any vertex, the remaining m - u must come from the set (7), which

as equalities specify zero coordinates. The observation of Dantzig follows

Ieeditely. The statement is clearly valid also if the restrictions of

type (5) are stated as equalities Iistead of inequalities.

The geometric interpretation given above in complete in principle, but

in practice it still gives little hint of ways of arriving at the nuerical

solution of any problem. In this we are helped by what my be a less standard

or more subtle geometric interpretation. Without regard to standards,

subtlety or ingenuity, hoever, I want to stress here that it is a differert

geometric approach. Alone, it might not be any more productive than the

first geometric interpretation I indicated, but the two interpretations used

together have been remarkably effective in produoig numerioal results. The

joint use of the two geometric interpretations and the introduction of the

following interpretation seem to be due to 0. B. Dantsig (although the power

of the combination in Dantsig' s method was first explicitly pointed out -

at least to me - by D. Gale, H. W. Kuhn, and A. W. Tucker). I do not feel

competent here to comment further either on Dantaiges remarkable insight

and Ingenuity or on the deep research done by Gale, Kuhn, and Tucker in
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various Joint and individual works in making this insight and ingenuity

clearer - again, at least to me.

The second geometrical approach uses a coordinate space of z dimensions -

not m_ dimensions. In this space the rectangular array q,,a from the inequali-

ties (5) is considered to be a set of m vectors, one for each value of the

index a with components q, a', " 1(1) /1. The non-negative multipliers Xa

in inequalities (5) act on these vectors. For all admissible (that is, non-

negative) x., the left hand members of inequalities (5) generate the coordinates

of points of a polyhedral cone in this p-dimensional space, and the inequalities

(5) are satisfied by points of this cone which lie in an orthant of the P -dlen-

sional space lying "below and to the left" (in a multi-dmenional sense) of

the point with coordinates f, "

It should be noted that in this interpretation the utility function is

not a point function. Thus, if the vectors q. a are not Independent for all

a, there may be several representations of any one point of the polyhedral

cone described by the left members of inequalities (5). This means that

several different note xa may correspond to the same point. Furthermore, in

forula (6) these various values of xa may give different values to u, and

in order to determine u it is necessary to know not only the point of the

-dimensional space at which it is to be determined but also the representa-

tion of this point in the polyhedral cone described by the left members of (5).

It might be worth noting briefly in passing that the u-dimensional set

described by inequalities (5) and (7) might Just as ve1l b described as a

convex region with prescribed vertices, using multipliers similar to those

used in the description of the convex polyhedral cone in p-space. Bimilarly,
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* it is true (but nct quite obvious) that the convex polyhedral cone in

p-space represented by (5) and (7) might also be described as an intersection

of closed half spaces with boundaries passing through the origin. (A closed

half space is a hyperplane and all the points lying on one side of it.)

Much of the recent analysis leading to powerful ccmutational attacks

on the linear programming problem is based on this possibility of desbribing

these sets in two different ways. I sall not go into this in detail here,

however.

4. A problem whose variables an permutations - the assigm ent problem

I now turn from the main course of ny paper to mention a famous problem

whose variables are permutations and which may be reduced to a linear program-

ming problem. This is a problem of maximizing a fUnction of permtations on

n marks the function to be mximized is from one particular set of functions

which oontains mwm utilit functions of problems important in econometric

applications.

In principle, a problem of maximizing a function of permtations in

even easier to solve than the linear programming problem, for there are

only a finite number of permutations and one need only try them all. =ai

finite number may, however, become forbiddingly large if the number of

marks n is large. For example, the number of permutations on 12 mrks is

about 4.8 A 10 8, but a manufacturer might reasonably inquire as to which

of twelve different products he shouild make each month during the year in

a single plant. The number of permutations of 20 marks exceeds 10

I shall describe a method used to reduce saw permutation problem to

linear programing problems, and thus I shall describe by iplication the
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type of function i*Ach must appear as the utility to be maximised. The

permutations are first written as matrices. A permutation on n marks my be

represented by a matrix with n rove and n columns subject to the condition

that each row and each column contains exactly one element which has value 1

and exactly (n - 1) elements with value sero. If such a matrix is r, then

it can be interpreted as representing the permtation which takes the mark i

into the mark I for all (i, J) for which rij 0.

This representation of permutations mq be embedded in the set of doubly

stochastic matriooe these are matrices, also denoted by r 1 1 whose elements

satisfy the follmrIng linear restrictions:

(8) r 3 QI ,

(9) r

(10) iri 3 .

We might note that one of thes last equalities is dependent on the others,

for each of the two nets (9) and (10) implies that the sum of all the

elements of the doubly stochastic matrix is n.

This set of doubly stochastic matrices, then, may be considered as

rewesenting a convex polyhedral set in a space of n2 dimensions. The

matrices which represent pu'mtations belong to this set. They are, in fact,

the only vertices of the set. This fact has long been known, but Dantsig

points out that a simple inductive proof follows from his observation (noted

above) that no vertex of the region has mre than (2n - 1) non-sero coordi-

nates. (Here the observation that one of the inequalities of (9) and (10)
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is redundant has been used.) Not every row of a matrix representing a vertex

can have as many as two elements differing from zeros for this would give 2n

non-sera coordinates in the arrayj hence at least one row must have a single

non-sero components which nut have the value 1 because of relations (9).

Because of (8) and (10), all other elements of the column in which the element

with value 1 appears must be zeros and the original matrix less this row and

column must be a doubly stochastic matrix with (n - 1) rows and columns.

Furthermore, if the point in question is a vertex of the original matrix,

the new (n - 1)x(n - 1) matrix at also represent a vertex, and the inductive

proof followe easily.

Thues the introduction of doubly stochastic matrias permits the

permutations to be represented as the vertices of a convem polyhedral set;

it the utilitq fumtion to be maximized can be extended to be a linear

function over this sets which is the case for an important class of problems,

the problem can be stated as a linear programing problem.

An example of this kind arises when n objects are to be assigned to n

positions under a suitable utility rule. These objects may be people

assigned to jobs, they may be factories assigned to areas, and so on. The

restriction on the utilt function is that there is a number describing

the value of each cbject in every possible location and that this value is

independent of the assignments of the remaining objects to the remaining

positions. In short, there is to be an array gij of utilities to be

achieved independently if the i-th object is assigned to the j-th position.

The permutations in questiop are those relating the ordered set of objects

to their assigned positions. If these pernutations re represented by their
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matrix in the manner described above, the total worth of any arrangiemet is

given by the utility function

(11) - j rj.

ij

This function extends naturally to become a linear function defined (according

to the same formula) over the space of doubly stochastic matrices, and the

linear programming problem is thus set.

5. Economic eouilibrium and a duality theor

This section will be devoted to a proof, from the point of view of cost

and utility, of a theorem which is really geometric in its content. The

theorem itself was recognized implicitly by Dantzig and explicit algebraic

statemnts and proofs have been supplied by Gale, Kuhn, and Tucker in various

papers. The proof which will be developed here is a specialization of a stud

of some conditions of economic equilibrim contained In other work to be

published by R. X. Ncohane and the author.

I again consider the mjor problem stated in term@ of the Inequalities

(5) and (7), Za qqa fa '"r0 ( and x & 0, respectivel y, and the requirement

that the utility function expressed in (6) u = Za a 1za be maxied subjeat

to the above feasibility restrictions.

I shall here asume that the numbers f. in restrictions (5) represent

actual investments in plant or other facilities and that these restrictions

are obtainable under a rental agreement. It will be convenient notationally

to consider that fc is a particular set of restrictions which has been

bought or rented and that competitive sets have values denoted by T. or by

other similar marks deviating from f .
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The rent corresponding to a set of restrictions Y. (expressed in the

soale used in (6) for the utility computation) will be denoted w(T). In

some particular oases I shall be interested in a function w which is a

linear form; I shall reserve the symbol v for this function, and I shall

always use the marks a( as coefficients in this form, so that

(12) v. ZXr

Now, the point of view will be that a set of facilities abstractly

denoted by fe has been rented at a rate of w(f), Under optimal operations

this will yield a utility u Za ga Ra, where R. is an optimal choice of

activity level adnsible with the given feasibility restrictions. some

other not of facilities abstractly denoted byT could be rented at a rate

v()o An obvious question to examne is the qestion of whether there In an

esonmic force in favor of changing the feasibility restrictions rented.

I shall here poiz* out that fbr some choices of r there may be no

solutions at all to the inequaities (5) and (7) I shall rule these candi-

dates out as not admissible. Other choices might' conoeivably lead to

possibly unlimited utility$ bat I shall ignore these on the same basis as

above - namely, lack of interest. (Actually it will become clear that

there is no my a problm with a firxte maxima attainable utility can be

deforned Into one with possibly unlimited utility without changing the

coefficients qoa') In order to avoid tedious detail I shall omit most

reference to admissibility and to the possibility of unlimited utilities.

Hower, I shall establish some foibal descriptions of terminolog in

order to ease the Job of expressing the simle for extensive remarks which

will be pertinent.
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DEINITION. A set of restrictions F will be said to be admissible If

there exist activity levels xa which satisfy the feasibility restrictions

(5) and (7) with the values inserted in the right members of (5):

(7) xa b 0 .

DEFINITION. A net of tit levels xa will be said to be admissible

with if P satisfy the feasibility conditions (5) and (7) Is stated

above.

DEFINITION. For' some fixed t let Rabe a set of activity levels

uimizsng the form (6) u = ;a ga z& subject to the feasibiltr restrictions

5Z qa aandt eeg (7) za hO0. Denote~ M the subset of these restric-

tions (5) and (7) which are satisfied as equalities by xa . A .@t of

restrictions I. is w admissible relative to 8 if it admits a set x

sati!suiu the inequalities of 8 with the numbers 7 substituted in the

right members of (5).

DEFINITION. A set of activity levels x. is weakly admissible with

respect to restrictions IF, which are w admissible relative to S

(associated with f~ and i i.:f it satisfies all the inequalities of 6 in

which Tq have been appropriately substituted in the rgh members.

Then, attention will be restricted to a set (implicitly defined) of

admissible or weak3y admissible values r, and futions t(T) and T(T)

will be defined implicitly for these valuesj

DEFINITION. The function t, defined for eery admissible set r as

argument, is the maximum attainable utility in expression (6) associated
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with the restrictions F in the right members of inequalities (5) when these

Ineualities are used with (7) to define admissible activity levels.

DU'IIIXN. The function T(?), defined for ever weakly admissible not

relative to some set S of inequalities (5) and (7) is the value of the

maximum attained by the utili!Z expressed in the linear form (6) MM wakly

admissible activity levels relative to S.

LEM 1. For aq fe and x, the function T(F) is defined for all Y

for which t(?) is dfined, () .t( , ad a(f) - t().

r&a. The inequality is an obvious result of removing admissibility

restrictions from the admissible set to create the weakly admissible set. The

final equality follows from the non-restrictive nature of the dropped inequali-

ties at the optimizing solution ir

LIM 2. The set of admissible or weakly admissible aotivity levels

associated with ar admissible or admissible set of restrictions s
the vector sum of a solution of the set plus the set of solutions of the

Y 0.

Znf. This is a standard result of linear algebra.

LIN 3. If x. is an admissible or weakly admissible set of activity
levels for sm admissible or we adissible IF then ever admissible

- - - I IV- w
or weakly admissible set of restrictions f, nelghborizg F admits or !

admits activity ne&h z. .

ZCW. The proof is a etandard exercise in linear algebra using

lmm 2.

LAW . Ifa feasible or m feasible 3r exists for which t(?) or

Z(F) exists and is finite, then t(?) and T(T) exist and are finite for every
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feasible or weakly feasible 1' and in particular t(O) - T(O) - 0.

Proof. The proof follows immediately from the linear homogeneous

nature of the utility u, and from lemma 7 below.

With the definition of t(T), it is easy to describe a condition of

economic equilibrium in which there is no economic force to change an assign-

ment of feasibility means from the values f to some new values To.

DEFINITION. A feasibility assignment f is an equilibrium assignment

Lf Wd 0nly L or ever admissible T

(13) w(T) - w(f) b t(T) - t(f)

This definition mq. in effect that the cost of changing the feasibility

means is no less than the gain which could be attained by the change in

potential utility which would be implied.

Several obvious statements will be mde about functions hich cause fq

to be an equilibrium assignment. They will lead to the duality theorem whioh

will say in effect that in any problem it is possible to give an examp4e of a

linear homogeneous function w - v which renders a particular feasible f., an

equilibrium choice. This abstractly possible rent is useful in computation

whether it is a realistically attained rent or not.

LSM& 5. if w(?) - t(), then f- is an equilibrium assignaent.

Proo. Under the conditions of the lemma, (13) is satisfied identically

as an equality.

RI4 6. Ifw(f) a t(f) and w( h t(f) for e I thenf isan

equilibrium a.ssignment.
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Proof. Under the conditions of the lemma, inequality (13) is satisfied

Imediately.

The development will now follow a course in whioh it i 11 be proved that

t(l) is a convex positive homogeneous function of weight one and that a sup-

porting linear homogeneous function will serve as w(T).

IBM 7. If rx is feasible and if pisa ositive rnMer then pT.

is feasible and t(p Y) - pt(Y), that is, t(f) is positive homogeneous of

weight one.

Proof . If is an optimal solution for ! then p !a is clearly a

feasible set of activity 3evels for restrictions pr and hence, since the

utility of am set of feasible activity levels is expressed by a linear

homogeneous fom and since the particulw feasible solution pxa is a

competitor for the optimizing solution, it follows that t(p !, ) i t(h ).

However, if an ept$dzmig solution xNa for the feasibility restrictions Pf

is selected, the same argument with multiplier P -1 gives t[- P )] .

P-1 t(fY), and the equality follows. This completes the proof of the

lema.

LOW 8. The statement of lemma 7 is valid for the function : and

w admissible restrictions Y.

Prjo. The proof is that of lema 7.

LIM9. If i Y weak3, feasible rlative to f. and haen

f . f + P(c - fC) i feasible for a > 0 and f + ( fq)].

T(rt) p (.O - fat).

Proof. The proof is that of lemma 7.
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LIM4 10. The function t(T) is convex; that is for o admissible

restrictions f. and ft a for M numbers A and )a which are both non-

anative and whose sum is one it is true that AT' + pf'~ is admissible

and that

(34) t(Al + ' Af A t('), + Ut(f ').

Proof. The admissibility of ? *f is clear, for if i

admissible with Fq and If x'a is admissible with f' , then A i + ja in

admisible with A + ) f ; this follows immediately byv multiplying the

inequalities (5) and (7) (with appropriatf choices for a a or x'a p

fa ,. tor f€ ) by the non-negative nuabers X and u. If the two sots of

activity levels are optimising, each for its associated restrictions, then

the utility asooiated (by (6), which is 4 linear form) with the admissible

activity level A&a I+hXa subject to the new restrictions + Uaf ', is

+ At(') , and Inequality (14) f ollows Imediately. This computes

the proof of the lam.

LM 1. The function "f(]) is convex.

Proof. The proof is that of laima 10.

These 3emmas prove that t(?) and T(?) are convex functions which are

positive homogeneous of weight one. Readers with an intimate knowledge of

such functions and who may be famislar with recent work on econometric theory

,based on considerations of sih functions may jump to iimediats conclusions

which will be established in the next theorem. Those who are willing to

apply Miler, s theorem on homogeneous functions Snoring the possible lack



Conference of Arsenal Mathematicians Th

of the required partial derivatives may prove the next theorem shortly by

setting

and applying the lemtos above.
THIREM4 I. There exist numbers z associated with feasible f

such that if for this choice of s., the function w(T) - v(?) - Za se a p

then the restrictions f. are quilibrium restrictions.

Proof. First consider the possible case that t(f) - 0 and t(T) d 0 for

all Yfo. In this case the coefficients may be taken z 0. With this

choice the value of v is identically zero and the theorem follows by

lemma 6.

Otherwise consider the following cmstraction. Find the set F+ of

values Te, at which T(T) - t(f) + h, where h is a small positive constant.

It will be shown later that F+ has content and that it is closed. Choose on

F a point closest in the sense of euclidean metric to f. I call this point

f'a . Write s - e(f'o - fec) and choose c-- h where

h is the positive number chosen in F .

Before continuing with the proof, note that the positive content of the

set F* follows from the lemmas above. In particular, if t(f) 0, some T

on the ray joining the origin with fat (on one side or the other of fe

dependUg on the sign of t(f)) will lie on F+ for mall enough h, according

to lemma 8. If t(f) - 0, and using the assumption already made that there

exists some ro such that T(Y) h 0, there must exist a point on the ray from

f ( through such 7 on e , according to lemma 9.
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The fact that F is closed follows from the continuity of the form (6)

giving the utility function and lemma 3. Hence the point f4 mentioned

above must exist.

Now, if fq and f6 are collinear with the origin, it follows from

the facts that v(ft) - v(f) w h, that v(O) - 0, that v(T) is linear, and

from lemma 8 that v(f) - t(f) and v(f') t :(f). If f and ft are not

collinear with the origin, then the same results can be obtained by noting

that lemmas 8 and 9 guarantee the linearity of T(T when A is restricted to

move in a single two-dimensional plane containing the segment from the origin

to f .

The rest of this proof depends on noticing that the determination of zQt

ts independent of the size chosen for h in determining F. This follows

Imuediately from lemma 9 using the same linear reasoning as that employed in

lina 71 that is, if two different values of h gave two different values of

( then the usual inconsistency shows up that neither of these can be good,

for each furnishe a competitive rate of charge for the determination of the

other.

With this observed an analogue of Euler' s theorem, using the z instead

of partial derivatives (they were computed by formulas suitable for computing

the partial derivatives of a linear homogeneous function from the information

granted) wil give the final desired result. This analogue is that with this

choice of sz4 used as partial derivatives of T()2, it is true that T(T) d ZsaG oI.

This result is a natural one, for the inequality mq occur when the restrictions

prevent the use of linear interpolation. However, the proof of this theorem

does not follow the usual proof of uler' s theorem. Rather it depends on a

simpler geometrical argument, which will be sketched.
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If the proposition is false, thon there must exist a point f" such that

UPf") > z Lzatf",,. Now, this point f". along with the origin and the point

f determines a two-dimensional plane, and in this plane the function T(f)

is linear according to lemmas 8 and 9. Since the function v a Zt a 1'e is

linear and since the values of T and v agree at f, , it follows that T must

exceed v at all points along the ray from f., through f",,, Now, if this

ray intersects or is parallel to the hyperplane v = t(f) + h, where h is the

positive value used to determine f', i then it must be true that f' t is

fbvther from f. than some other point determined as follows. The point on

the ray at which t( ) t(f) + h is determined, and the segment between this

point and f'ea is constructed. By assumption, there is a point on this seg-

met closer to f C than is f' . By leuma 10 the value of T at this closer

point is at least t(f) + h, and if it exceeds this value at this point there

is (by leama 9) a point even closer at which T attains the value f(t) + h.

This completes the contradiction if v is increasing along this ray.

Finally, if the ray from fr through f"o is a direction of decreasing

v, then a similar argument relative to the rays from f. through a point of

the segment joining fV and f"( leads to a contradiction, for it is easily

shovn that T exceeds v and increases along such a ray. This completes the

proqf of the theorem.

We now turn to the duality theorem.

TM1 M II. If the linear form (6), u =a a Z a is maximised at

x a oM admissible variables x subject to the feasibility restrictions

()E auaZa.f and (7) xZa. , then ha lintar Lm
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(24~) v r(fix z

attains a minimum at some set of values Z a T* an admissible variables

Ssubject to the restrictions

(15) soh o

and

(26) t o,,a "O, b ga•

Furthermore. 0 for *er a for which Z q ta ma 4 fQ, and la - 0 for

e ea fo wihZ q et sd > X. Nenoe the !&~j value of u1qul

the minimal va u of v.

Proof. The minimal value of the form v will be shown to be takmn at the

values s 4 computed in the proof of the last theorem.

In the first place it is easy to show that these values are admissible

under (25) and (16). Indeed, if v a Z ze( fL is a rent which renders fee an

equilbrim restriction, it is obvious that z h 1 01 otherwise the rent would

be lowered by increasing the values of fq for ar values of at corresponding

to negative s,( , and this decrease in rent would not be accompanied by azW

restriction in activity; in fact, it would generally be accompanied by

greater freedom of activity, hence no decrease in utility. This proves that

the coefficients s, developed in conetion with theorem I satisfy condition

(2$).

Similarly, if condition (16) is violated for some value of a. then the

restrictionh should be increased by enough to permit a unit increase of the
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activity level xa for this value of a. This increase will require at most an

increase of %e0a of the ot-th restrictions at a total cost of Z~ aqc j if

condition (16) is violated the gain from this, ga, exceeds the increase In

rent and hence the levels of restriction are not equilibrium levels. This

completes the proof of the admissibility of the coefficient s a of theorem I.

Now, if restrictions (5) are multiplied by the non-negative nvbersz

and summed and restrictions (16) are multiplied by the non-negative ubers

xa and smmed the following inequalities result:

Thus, for no admissible choice of xa and z., is u larger than v. Howevr,

for the existence of no force proved in connection with the choice of z c in

theorem I, there can be no force toward the feasible income of sero connected

with restrictions set at the zero levelj that is, there will be force to go

out of business unless u A v. Thus, for the optimal choice of xa - x and

the choice of S. made in the last thewaem, It must be true that u - vy this

proves the equality advertised in the last sentence of the statement of the

theorem.

Finally we need only notice that azW strict insivality among the set

(5) is preserved as a strict inequality if it is multiplied by a positive

nuer sK and is preserved as an equality if it is multiplied by a sero

number sg a whereas equalities are preserved as equalities when multiplied

by asW sac. A similar remark applies to the inequalities (16) and multipliers

xa . In order to have the equality preserved, the condition stated in the next

to last sentence is neoessary. This completes the proof of the theorem.
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6. Numerical solution of

The application of theorem II above in many ingenious ways has led to

realistic computational attacks on problems. One of the most ivqenious and

successful of these is the simplex method which has been developed by

G. B.Dantzig and his coworkers and which is described in some of the publica-

tions already cited.

The description of the simplex method in a short space has defied good

expositors, and there is no intention of presenting a full or even a workable

account of computational methods in this paper.

However, it should be noted that methods are developed to a point where

they are applicable completely automtically on high speed computers, and

that problms with a hundred or more variables and a hundred or more restric-

tions are nov feasibly attackable through the use of these systmtic attacks

on the larger mohines now available.

I shall include a short example. It will be solved by methods not

generally applied to the numerical solutions of problems, but the solution

will illustrate some of the points of theorem II above.

The example pertains to the function

(17) U 0x, 2x2 +3+ 4%

which is to be maximised subject to the feasibility conditions

2 ,x2 +3x-+2x4 i



Conference of Arsenal Mathematicians 277

and the non-negativity conditions

(19) xa h0
The dual problem to this involves the fori

(20) v a 6s + 922 + 7s3

which is to be minlaised subject to the feasibility conditions

2s. + 3s2 + 1s3  1 .

ls1, + 2s2 + 4s3  2 ,

(21) 14 +2% 2 +3s 3  3 a

lsl+352 + 2S3 4 ,

and the non-negativity conditions

(22) 0

Before the illustrative paoblem is oon-inued, let it be perfectly clear

that the complete unanimity of positive signs among the coefficients is a

great help (but it is a help which pay appear in many problems of practical

aignificance - and unfortunately be missing In many others of at least as

great significanOc).

Since it is established that vertices of the regions of feasible solu-

tions will mxiaise or minimise the functions considered, a first attempt will

be side to find vertices. In the problems at band, this Is easy (again the

positive coefficiezts help). An initial start for x. i x a (0, O, 0, 0).
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This is a vertex of the region (the unique solution of the four equations

got from (19) by rejecting the possibility of inequality), and a simple

test shows that it satisfies all the conditions (18) as strict inequalities.

The value attained by u at this point is 0.

Turning to the dual problem, the solution of the three equations which

can be got by rejecting the possibility of inequality in (22) is not feasible;

indeed, it satisfies none of the rdL~ions (21). However, a feasible solution

can be obtained by readmitting one of the inequalities from this set and

extracting an equation from (21). If we set '1 = z2 = 0 artibrarily as the

equations retained from (22), it develops that the fourth of inequalities

(21) is most binding on A, and we get a vertex at (0, 0, 2).

Now according to theorem II these two vertices would constitute solutions

of the problem and its dual if and only if the value attained by u and that

attained by v are equal. The value attained by v at this vertex, however, is

i4, which is greater than the zero value attained by u. Consistent with

theorem II, we note that a non-sero value of s3 appears even though the third

of the inequalities (18) is satisfied as a strict inequality rather than as

an equality. This furrshes some guide to a means of improving the va2es

obtained.

SLnce the fourth of the inequalities (21) is satisfied by the z-vertex

in hand as an equality, theorem II would encourage the enlargement of x4.

Thus we replace the fourth of the restrictions (19) by an inequality and

seek an equality among the set (18). The most binding of these inequalities

(1) undr this cpnditions, x1 a x2 a x 3 a 0 is the second, and we are led to

a now vertex xa - (0, 0, O, 3). At this vertex, the value of u is 19.
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Since the second of the inequalities (18) is now satisfied as an equality,

we are encouraged to permit the value of z2 to become positive in seeking a

better vertex in the z-upace. The earlier restriction '2 - 0 will be replaced

by an equality extracted from one of the first three inequalities of (21) -

the fourth of these inequalities ts already satisfied as an equality. The

third equality is adequate, and the vertex it gives (with the other restric-

tions) is zs - (0, 6/5, 1/); for this vertex, v - 61/5.

Again, we do not have a solution of the problem and its dual, but there

is considerably better agreement between the values of u - 12 and v - 61/5 than

we had attained before. The discrepancy is still de to the fact that the

third of the inequalities (18) is satisfied as a strict inequality while

53>O.'

The z-vertex now in hand satisfies the third and the fourth inequalities

(21) as equalities, and hence both x3 and x4 are encouraged to seek positive

values. Thus we relax the equality x3 = 0 to the inequality x3 k 0, and we

seek to satisfy another of the inequalities (18) as an equality (meanwhile

satisfying all inequalities, of course). We retain the second equality

from (18) which is satisfied at the old vertex. The solution obtained by

satisfying the third relation of (18) as an equality satisfies the first

relation as a strict inequality, and we have a new vertex xa

(0. 0, 3/59 13/5).

Actual2y, t1his completes the solution of the problem. This follows

from the evaluation of u - 6115 at this vertex, a value which agrees with
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the value obtained for v at the last z-vertex. Furthermore, we might notice

that the positive components of the z-vertex correspond to values of the index

for which relations (18) are satisfied as equalities, as theorem II demands,

and that the positive components of the x-vertex correspond to values of the

index for which relations (21) are satisfied as equalities.

This oompletes the example.

C. TOMPKIn
hmerical Analysis Research

Department of Kathemtics
University of Callbrnia
Los Angeles 24A, California

5 June 1956
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The Basic Principles of a Two Dimensional Slide Rule

Clarence R. White*

The primary objective of this paper is to present a Two Dimensional

Slide Rule which combines the features of special purpose graphpaper, nomograms,

slide rules and the like. Such a device will consist of two transparent

surfaces.

The first surface will be called the 'base surface' or lbodyt upon which

are drawn appropriate function scales and a set of curves in color, the

rectangular coordinates of which are given by

1. (0, log trig 0) in figure 1

2. (x, log X) in figures 2, 3, 4, 5

3. (x - log tan 0, log trig 0) in figure 6

4. (f(0), log trig 0) in figures 8, 9, 10, 31

.5. (01, log trig 0) in figures 13, 14

This surface corresponds to the 'body' of the one dimensional slide rule.

The second surface will be called the 'sliding surface' or 'slide' upon

which are drawn sets of scales colored to match not only the co-operating

curves of the base surface but also the quantity under consideration. The

division marks of each scale are perpendicular to the straight line axis

which theoretically is infinite in extent. The index of a scale is that mark

which denotes the number 1. This surface corresponds to the tslidet of the

one dimensional slide rule. See figures 1 and 12.

The fundamental principle of this Two Dimensional Slide Rule results

when a sliding surface comes to rest upon a base surface in such a way that

the slope of an axis when referred to the coordinate system of the base

surface is 90 degrees, i.e. perpendicular to the horizontal direction, since

each apparent intersection of a base surface curve with a sliding surface

axis determines a point on curve and on axis. Identification of results is

also accomplished by the introduction of alignment algebra which gives coding

symbols for the location of desired solutions.

The Two Dimensional Slide Rule may be regarded as a special case of

alignmbnt charts which is limited to real positive numbers and represent

solutions to x(y)'nz - 1. The use of a base surface and a transparent sliding

surface, upon each of which the horizontal rulings are linear and the vertical

rulings are logarithmic (corresponding to the y-scale and z-scale respectively)

affords a ready means for the construction of alignment charts for all values

of n.

*Banistic Research Laboratories
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See figures 2 and 3.

It also gives a solution when any three of the four numbers are specified

provided that the sliding z-surface whose index is the index of its z-scale

be superimposed upon the base y-surface at the point (n, log x) for n and

x given; at the point (1, log x) for n not given. Consider the following

cases for the solution of x(y'n)z - 1.

1. Given (n,xy) - (2, 4, 6) with index location at (n, log x), find z - 9
See figure 4

2. Given (n,xz) - (2, 4, 9) with index location at (n, log x), find y - 6
See figure 4

3. Given (x,y,z) - (4, 6, 9) with index location at (1, log x), find n - 2
See figure 5
The index location of the sliding z-surface is thus a two dimensional

parameterization and gives rise to the motion of the sliding surfaces of

the Two Dimensional Slide Rule. The alignment solution for case (i) results

from the alignment of y a 6 on the y-scale with the point (0, log 1) to give

the answer z - 9 on the z-scale. The alignment solution for the case (2)

results from the alignment of z - 9 on the z-scale with the point (0, log 1)

to give the answer y - 6 on the y-scale. The nomographic solution for case

(3) results from finding the point z on the z-surface along the line deter-

mined by the points (0, log 1) and the position of y - 6 on the ;-scale at

the point (1, log y). The abscissa of z is the desired value of n - 2 on the

n-scale which is horizontal. It is convenient to insert a piece of thread

at the pivot point (0, log 1) on the base y-surface to serve as the unmarked

straight edge or axis.

The repeated use of such an axis in nomography suggests the introduction

of an algebra of alignment charts which will be illustrated from the Line

Coordinate Chart given in figure 4.

The symbolism to be introduced stems from the fact that an alignment

chart is made up of Scales, Axes and division Marks. If now these three

elements be identified by means of the capitalized letters in the order Just

given, then symbolically

Si)A(MJ  represents a point on the Axis determined
by division Marks on the Scale so that M
represents a number which is in one-to
one-correspondence with the points of axis.



An algebraic symbolization of procedures is made possible by

81)A(MA  & Si)B(MB denotes the horizontal translation of a

point from axis A to axis B

S)A(MA : 8i)B(MB denotes the axis determined by two points

Si)A(MA :S)B(M B  :: Si)C(Mc denotes the alignment of a third point with
two other points

The designations for axes fall into two categories (1) a number associated

with its intersection upon the horizontal axis and (2) a literal expression based

upon its functional representation. A similar analysis follows for a point on

such an axis: (1) a number associated with its position on the axis which is ver-

tical and (2) a literal expression based upon its functional representation, thus

Si)A(MA = f(x) denotes the value of f(x)

The alignment algebra gives for Case (1) figure 4

/Blue)O(l : /Blue)1(,,6 :: Yellow)l(z-9

Coding symbols for the location of a point on a sliding surface will be

denoted by a number triad, where the first number refers to a function scale;

the second nmaber, to a vertical axis; and the third number, to a point on the

axis. The symbolic expression is Si)A(M.

Coding symbols belonging to a base surface will be preceeded by

Horizontal scales will be denoted by three symbols, the first of which is 's';

the second, a number; the third 'c', such as /s2c, /s2c, etc. A point m2 on such

a scale will be denoted by /s2c(m .

Curves for I-Base Surface-I (figure 1) are constructed from points whose

Ordinate = log Fn(x) and whose Abscissa = log hav 0 or log Hav(0 + 90) vhere

P a(x) - csc 0 = (L + S)/2y /X

Fb(x) -cot 0 = (L - S)/2V V A

Fc (x) . sec 0 = (L + S)/(L-s) LA
Fd(x) - one

%(x) - cos 0 - (L- S)/(L + S)

Ff(x) tan 0 - 2VW/(L - S) L.
1g(x) sin 0 - 2 VL/(L + s) LL

Fh(x) -hay 0= S/(L + S) A-
F(x) -av(0 + 90o ) - L/(L + S) .

for 0 is less than S is less than L and for 100 is less than 0 is less than or

equal to 90 .
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Coding symbols for the Two Dimensional Slide Rule

Blue)2(M2 /a denotes a point on Axis )2(
determined by the division
marks of its blue scale which
point is on curve /a of base
surface.

Blue)2 /s5o(50 aligns axis )2( into a one
dimensional slide rulS movement
along the division 50 of the
horizontal scale, s5c.

Blue)2 /s5c(50 also means that the vertical
axis )2( is perpendicular to
the horiaontal axis of s5c at
point 50 on it.

Blue)2(200 a : Blue)2 /650(50 fixes the position of the sliding
scale )2( by means of a number
on it and the number on scale,
s5c.

Green)l(L Green)l(S A fixes the position of the sliding
scale )1( by means of two

numbers on it.

Green)l(L / : Green)l(B h :G Green)l(M /d determines the answer M at the
intersection of the axis )(
with the curve /d

Blue )2(20 L Blue)2 1.50(50 ° 22 Orag)2(M /d determines the answer M at the
intersection of the axis )2(
with the curve

Figures 6 through 14 represent Two Dimensional Slide Rule Solutions

to the problem. therein defined.

W( thanks to co-workers who bad a part in the preparation and in the

publication of this paper.
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